Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 207, Pages 27–36
DOI: https://doi.org/10.36535/0233-6723-2022-207-27-36
(Mi into976)
 

On the inverse closedness of the subalgebra of local absolutely summing operators

E. Yu. Guseva

Voronezh State University
References:
Abstract: A local absolutely summing operator is an operator $T$ acting in $l_p(\mathbb{Z}^c,X)$, $1\le p\le\infty$, of the form
\begin{equation*} (Tx)_k=\sum_{m\in\mathbb{Z}^c}b_{km}x_{k-m}, \quad k\in\mathbb{Z}^c, \end{equation*}
where $X$ is a Banach space, $b_{km}\colon X\to X$ is an absolutely summation operator, and
\begin{equation*} \lVert b_{km}\rVert_{\mathbf A\mathbf S(X)}\le\beta_{m} \end{equation*}
for some $\beta\in l_{1}(\mathbb{Z}^c,\mathbb{C})$, $\lVert\cdot\rVert_{\mathbf{A}\mathbf{S}(X)}$ is the the norm of the ideal of absolutely summing operators. We prove that if the operator $\mathbf{1}+T$ is invertible, then the inverse operator has the form $\mathbf{1}+T_1$, where $T_1$ is also a local absolutely summing operator. A similar assertion is proved for the case where the operator $T$ acts in $L_p(\mathbb{R}^c,\mathbb{C})$, $1\le p\le\infty$.
Keywords: absolutely summing operator, inversely closed subalgebra, difference operator, convolution operator.
Document Type: Article
UDC: 517.984.3
MSC: 47L80, 47B10, 35P05
Language: Russian
Citation: E. Yu. Guseva, “On the inverse closedness of the subalgebra of local absolutely summing operators”, Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 207, VINITI, Moscow, 2022, 27–36
Citation in format AMSBIB
\Bibitem{Gus22}
\by E.~Yu.~Guseva
\paper On the inverse closedness of the subalgebra of local absolutely summing operators
\inbook Proceedings of the Voronezh International Winter Mathematical School "Modern Methods of Function Theory and Related Problems", Voronezh, January 28 - February 2, 2021, Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 207
\pages 27--36
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into976}
\crossref{https://doi.org/10.36535/0233-6723-2022-207-27-36}
Linking options:
  • https://www.mathnet.ru/eng/into976
  • https://www.mathnet.ru/eng/into/v207/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025