|
Hyperbolicity of covariant systems of first-order equations for vector and scalar fields
Yu. P. Virchenkoa, A. E. Novoseltsevab a National Research University "Belgorod State University"
b Belgorod Shukhov State Technological University
Abstract:
We consider a class of first-order systems of quasilinear partial differential equations $\dot{\boldsymbol{u}}=\mathsf{L}'[\boldsymbol{u},\boldsymbol{\rho}]$, $\dot{\boldsymbol{\rho}}=\mathsf {L}''[\boldsymbol{u},\boldsymbol{\rho}]$ that describe time evolution of the pair $\langle\boldsymbol{u},\boldsymbol{\rho}\rangle$ consisting of a vector field $\boldsymbol{u}(\boldsymbol{x},t)$ and the set of scalar fields $\boldsymbol{\rho}=\langle\rho^{(s)}(\boldsymbol{x},t);\ s=1,\dots,N\rangle$, $\boldsymbol{x}\in\mathbb{R}^3$. The class considered consists of systems that are invariant under time and space translations and covariant under space rotations. We describe the corresponding class of evolution generators, i.e., nonlinear first-order differential operators $\mathsf{L}=\langle\mathsf{L}'[\cdot],\mathsf{L}''[\cdot]\rangle$ acting in the functional space $C_{1,\mathrm{loc}}^{3+N}(\mathbb{R}^3)$. Also, we find conditions under which a pair of operators $\mathsf{L}$ generates a hyperbolic system.
Keywords:
first-order differential operator, quasilinear system, hyperbolicity, vector field, covariance, spherical symmetry.
Citation:
Yu. P. Virchenko, A. E. Novoseltseva, “Hyperbolicity of covariant systems of first-order equations for vector and scalar fields”, Proceedings of the Voronezh International Spring Mathematical School "Modern Methods of the Theory of Boundary-Value Problems. Pontryagin Readings – XXXII”, Voronezh, May 3–9, 2021, Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 209, VINITI, Moscow, 2022, 3–15
Linking options:
https://www.mathnet.ru/eng/into999 https://www.mathnet.ru/eng/into/v209/p3
|
|