Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2002, 040 (Mi ipmp1014)  

Asymptotics of solutions to the ordinary differential equations

A. D. Bruno
Abstract: Here we consider the general system of ordinary differential equations and propose a method for computation of all power and logarithmic asymptotics of its solutions § 1. The method is based on algorithms of Power Geometry. In § § 2–5 we apply the method to find all logarithmic asymptotics of solutions to the modified system of equations, describing motions of a rigid body with a fixed point in the case $B\ne C$, $x_0\ne 0$, $y_0=z_0=0$. The logarithmic asymptotics form 6 families: 4 with two parameters and 2 with one parameter. All them contain usual and double logarithms.
Document Type: Preprint
Language: Russian
Citation: A. D. Bruno, “Asymptotics of solutions to the ordinary differential equations”, Keldysh Institute preprints, 2002, 040
Citation in format AMSBIB
\Bibitem{Bru02}
\by A.~D.~Bruno
\paper Asymptotics of solutions to the ordinary differential equations
\jour Keldysh Institute preprints
\yr 2002
\papernumber 040
\mathnet{http://mi.mathnet.ru/ipmp1014}
Linking options:
  • https://www.mathnet.ru/eng/ipmp1014
  • https://www.mathnet.ru/eng/ipmp/y2002/p40
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025