Preprints of the Keldysh Institute of Applied Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Keldysh Institute preprints:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Preprints of the Keldysh Institute of Applied Mathematics, 2018, 123, 38 pp.
DOI: https://doi.org/10.20948/prepr-2018-123
(Mi ipmp2482)
 

This article is cited in 2 scientific papers (total in 2 papers)

Unsteady corrector method for accuracy analysis of linear semidiscrete schemes

P. A. Bakhvalov
Full-text PDF (371 kB) Citations (2)
References:
Abstract: Unsteady corrector method is used to find the order of accuracy when it is greater than the order of truncation error and investigate the long-time evolution of solution error. In this paper this method is applied to linear semidiscrete schemes, which allows to simplify its description. We alsopresent its generalization for schemes with matrices next to temporal derivatives. Using this method we obtain new accuracy estimates for 4-point difference scheme R3.
Keywords: geometric corrector, consistency and accuracy, non-uniform mesh, superconvergence.
Funding agency Grant number
Russian Foundation for Basic Research 16-31-60072_мол_а_дк
Bibliographic databases:
Document Type: Preprint
Language: Russian
Citation: P. A. Bakhvalov, “Unsteady corrector method for accuracy analysis of linear semidiscrete schemes”, Keldysh Institute preprints, 2018, 123, 38 pp.
Citation in format AMSBIB
\Bibitem{Bak18}
\by P.~A.~Bakhvalov
\paper Unsteady corrector method for accuracy analysis of linear semidiscrete schemes
\jour Keldysh Institute preprints
\yr 2018
\papernumber 123
\totalpages 38
\mathnet{http://mi.mathnet.ru/ipmp2482}
\crossref{https://doi.org/10.20948/prepr-2018-123}
\elib{https://elibrary.ru/item.asp?id=35129827}
Linking options:
  • https://www.mathnet.ru/eng/ipmp2482
  • https://www.mathnet.ru/eng/ipmp/y2018/p123
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Препринты Института прикладной математики им. М. В. Келдыша РАН
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025