Meždunarodnyj naučno-issledovatel'skij žurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Meždunar. nauč.-issled. žurn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Meždunarodnyj naučno-issledovatel'skij žurnal, 2016, , Issue 6-5(48), Pages 107–110
DOI: https://doi.org/10.18454/IRJ.2016.48.196
(Mi irj130)
 

This article is cited in 2 scientific papers (total in 2 papers)

PHYSICS AND MATHEMATICS

Uniqueness of solutions of the Monge-Ampere a class at a sphere as two-dimensional manifolds

A. P. Filimonova, T. A. Yuryeva

Amur State University, Blagoveshchensk, Amur region
Full-text PDF (533 kB) Citations (2)
References:
Abstract: Restoring surfaces for given geometric characteristics is one of the most important and difficult tasks of modern differential geometry. The article presents the proof of uniqueness of solutions adversely elliptical differential equation of the Monge-Ampere equation on the sphere as a two-dimensional manifold linearization method. On the basis of the theorem proved considered a consequence of the uniqueness of a convex surface homeomorphic to a sphere in Euclidean space with a predetermined function of the Gaussian curvature. The conditions for the uniqueness of the surface in the hyperbolic space and elliptic space.
Keywords: negative elliptical equation, curvature of the surface, two-dimensional manifold, quadratic form.
Document Type: Article
Language: Russian
Citation: A. P. Filimonova, T. A. Yuryeva, “Uniqueness of solutions of the Monge-Ampere a class at a sphere as two-dimensional manifolds”, Meždunar. nauč.-issled. žurn., 2016, no. 6-5(48), 107–110
Citation in format AMSBIB
\Bibitem{FilYur16}
\by A.~P.~Filimonova, T.~A.~Yuryeva
\paper Uniqueness of solutions of the Monge-Ampere a class at a sphere as two-dimensional manifolds
\jour Me{\v z}dunar. nau{\v{c}}.-issled. {\v z}urn.
\yr 2016
\issue 6-5(48)
\pages 107--110
\mathnet{http://mi.mathnet.ru/irj130}
\crossref{https://doi.org/10.18454/IRJ.2016.48.196}
Linking options:
  • https://www.mathnet.ru/eng/irj130
  • https://www.mathnet.ru/eng/irj/v48/i6/p107
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Meždunarodnyj naučno-issledovatel'skij žurnal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025