Meždunarodnyj naučno-issledovatel'skij žurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Meždunar. nauč.-issled. žurn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Meždunarodnyj naučno-issledovatel'skij žurnal, 2019, , Issue 8(86), Pages 25–28
DOI: https://doi.org/10.23670/IRJ.2019.86.8.020
(Mi irj547)
 

PHYSICS AND MATHEMATICS

Combinatorial meaning of Euler's number

M. S. Perfileev

East-Siberian branch of FSUE «VNIIFTRI»
References:
Abstract: In this paper, we consider a new limit for the number e and give its rigorous proof using the apparatus of mathematical analysis. With the help of this limit, a combinatorial interpretation is given for Euler's number. It means that Euler's number is the ratio of the number of permutations (or combinations) of $n^2+n$ by $n$ to the number of permutations (or combinations) of $n^2$ by $n$ with an infinitely large number of elements $n$.
Keywords: Euler's number, limit of a function, Stirling's formula, number of permutations, number of combinations.
Document Type: Article
Language: Russian
Citation: M. S. Perfileev, “Combinatorial meaning of Euler's number”, Meždunar. nauč.-issled. žurn., 2019, no. 8(86), 25–28
Citation in format AMSBIB
\Bibitem{Per19}
\by M.~S.~Perfileev
\paper Combinatorial meaning of Euler's number
\jour Me{\v z}dunar. nau{\v{c}}.-issled. {\v z}urn.
\yr 2019
\issue 8(86)
\pages 25--28
\mathnet{http://mi.mathnet.ru/irj547}
\crossref{https://doi.org/10.23670/IRJ.2019.86.8.020}
Linking options:
  • https://www.mathnet.ru/eng/irj547
  • https://www.mathnet.ru/eng/irj/v86/i8/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Meždunarodnyj naučno-issledovatel'skij žurnal
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :88
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025