Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, Volume 25, Issue 2, Pages 281–294
DOI: https://doi.org/10.18500/1816-9791-2025-25-2-281-294
(Mi isu1083)
 

Scientific Part
Computer Sciences

Statistical modeling of the depolarizing properties of optically dense dispersive systems in the small-angle scattering mode of probe light propagation

A. A. Isaevaa, E. A. Isaevaa, An. V. Skripalb, D. A. Zimnyakovabc

a Yuri Gagarin State Technical University of Saratov, 77 Politechnicheskaya St., Saratov 410054, Russia
b Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
c Institute of Precision Mechanics and Control Problems of the Russian Academy of Sciences (IPTMU RAS), 24 Rabochaya St., Saratov 410028, Russia
References:
Abstract: Results of statistical modeling of the polarization degree decay in the case of forward propagation of a linearly polarized laser beam in multiple scattering dispersive systems are presented. Disordered ensembles of dielectric spherical particles with various values of the wave parameter are considered as these dispersive systems. The modeling algorithm is based on an iterative transformation of the Jones vectors for partial components of the multiple scattered light fields in the considered systems due to random sequences of scattering events; the transformation procedure is provided using the Monte-Carlo simulation. The average number of scattering events corresponding to the $1/e$ decay of the polarization degree, and the ratio of the depolarization length to the mean transport free path of probe light in the scattering systems are considered as the key parameters. It was found that the maximal depolarization length is achieved in the case when the wave parameter of scattering particles is close to the value corresponding to the first Mie resonance of the dependence of the scattering efficiency on the wave parameter. The modeling results are compared to the experimental and theoretical data obtained using a hybrid approach in the framework of the diffusion approximation of radiative transfer theory.
Key words: statistical modeling, dispersed systems, radiative transfer, depolarization.
Funding agency Grant number
Russian Science Foundation 25-29-00679
This work was supported by the Russian Science Foundation (project No. 25-29-00679).
Received: 20.05.2024
Revised: 10.09.2024
Bibliographic databases:
Document Type: Article
UDC: 51.73
Language: Russian
Citation: A. A. Isaeva, E. A. Isaeva, An. V. Skripal, D. A. Zimnyakov, “Statistical modeling of the depolarizing properties of optically dense dispersive systems in the small-angle scattering mode of probe light propagation”, Izv. Saratov Univ. Math. Mech. Inform., 25:2 (2025), 281–294
Citation in format AMSBIB
\Bibitem{IsaIsaSkr25}
\by A.~A.~Isaeva, E.~A.~Isaeva, An.~V.~Skripal, D.~A.~Zimnyakov
\paper Statistical modeling of the depolarizing properties of optically dense dispersive systems in the small-angle scattering mode of probe light~propagation
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2025
\vol 25
\issue 2
\pages 281--294
\mathnet{http://mi.mathnet.ru/isu1083}
\crossref{https://doi.org/10.18500/1816-9791-2025-25-2-281-294}
\edn{https://elibrary.ru/ZNKFMP}
Linking options:
  • https://www.mathnet.ru/eng/isu1083
  • https://www.mathnet.ru/eng/isu/v25/i2/p281
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025