Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2025, Number 3, Pages 54–70
DOI: https://doi.org/10.26907/0021-3446-2025-3-54-70
(Mi ivm10074)
 

Natural vibrations of a viscoelastic three-layer cylindrical body

I. I. Safarova, Sh. I. Zhuraevb, M. Kh. Teshaevc, B. Sh. Usmonova

a Tashkent Institute of Chemical Technology, 32 Navoi str., Tashkent, 100011 Republic of Uzbekistan
b Bukhara State University, 11 M. Ikbol str., Bukhara, 200117 Republic of Uzbekistan
c Bukhara Branch of the Institute of Mathematics named after Romanovsky at the Academy of Science of the Republic of Uzbekistan, 11 M. Ikbol str., Bukhara, 200117 Republic of Uzbekistan
References:
Abstract: The natural vibrations of a viscoelastic coaxial cylindrical body are considered; the space between the shells is filled with a viscoelastic material. The relationship between stress and strain satisfies the Boltzmann–Voltaire hereditary integral. As an example of a viscoelastic material, a three-parametric relaxation kernel with a weak Rzhanitsyn–Koltunov singularity is used. The problems of small vibrations of the mechanical system under consideration are solved. Equations of small vibrations of the aggregate in displacements are obtained on the basis of Lame's differential equations of the theory of viscoelasticity with complex coefficients. The equations of vibration of the outer and inner shells, which are made of viscoelastic material, satisfy the equations of motion of the shell, subject to the Kirchhoff–Love hypotheses. The problem is solved using the Green–Lamb transformation and the complex amplitude method. The stresses and displacements of each shell and filler are expressed through special functions of the Bessel and Neumann complex argument of an arbitrary order. A frequency equation with a complex parameter is obtained, which is solved numerically using the Muller method. For structurally inhomogeneous mechanical systems, the dependences of several modes of the complex natural frequency (real and imaginary parts) on various parameters of three-layer bodies are comparatively assessed. The application of asymptotic and numerical methods for solving frequency equations with a complex-output parameter is also comparatively assessed.
Keywords: natural vibration, shell, viscoelastic material, filler, three-layer body.
Received: 16.02.2024
Revised: 16.02.2024
Accepted: 20.03.2024
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2025, Volume 69, Issue 3, Pages 44–58
DOI: https://doi.org/10.3103/S1066369X25700240
Document Type: Article
UDC: 517.968
Language: Russian
Citation: I. I. Safarov, Sh. I. Zhuraev, M. Kh. Teshaev, B. Sh. Usmonov, “Natural vibrations of a viscoelastic three-layer cylindrical body”, Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 3, 54–70; Russian Math. (Iz. VUZ), 69:3 (2025), 44–58
Citation in format AMSBIB
\Bibitem{SafZhuTes25}
\by I.~I.~Safarov, Sh.~I.~Zhuraev, M.~Kh.~Teshaev, B.~Sh.~Usmonov
\paper Natural vibrations of a viscoelastic three-layer cylindrical body
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2025
\issue 3
\pages 54--70
\mathnet{http://mi.mathnet.ru/ivm10074}
\crossref{https://doi.org/10.26907/0021-3446-2025-3-54-70}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2025
\vol 69
\issue 3
\pages 44--58
\crossref{https://doi.org/10.3103/S1066369X25700240}
Linking options:
  • https://www.mathnet.ru/eng/ivm10074
  • https://www.mathnet.ru/eng/ivm/y2025/i3/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025