Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2025, Number 4, Pages 53–59
DOI: https://doi.org/10.26907/0021-3446-2025-4-53-59
(Mi ivm10081)
 

Natural small oscillations of a flat viscoelastic spiral spring

I. I. Safarova, M. Kh. Teshayevb, Sh. I. Juraevc, F. F. Khomidovd

a Tashkent Institute of Chemical Technology, 32 A. Navoi str., Tashkent, 100011 Republic of Uzbekistan
b Bukhara Branch of Institute of Mathematics named after Romanovskii AS RUz, 11 M. Ikbol str., Bukhara, 200118 Republic of Uzbekistan
c Bukhara State University, 11 M. Ikbol str., Bukhara, 200118 Republic of Uzbekistan
d Bukhara Engineering Technological Institute, 15 Murtazaeva str., Bukhara, 200100 Republic of Uzbekistan
References:
Abstract: Curved pipe systems are widely used in mechanical engineering, the nuclear industry, offshore oil production, and aerospace engineering. The purpose of the work is to study small vibrations of a viscoelastic helical spring. Small vibrations of a thin curved rod, the elastic line of which is a flat curve and one of the main directions of the cross-section of which lies in the plane of the curve, break down into two types: vibrations with displacements in the plane of the curve and with displacements perpendicular to the plane of the curve. The viscoelastic properties of materials are taken into account using complex elastic moduli. Asymptotic expansions are constructed for the eigenfunctions and eigenfrequencies corresponding to both types of oscillations of a repeatedly twisted flat spiral spring with fixed ends. A technique has been developed for obtaining resolving equations corresponding to the boundary conditions.
Keywords: small vibrations, spiral spring, viscoelastic properties, displacement, eigenfunction, frequency.
Received: 28.02.2024
Revised: 28.02.2024
Accepted: 20.03.2024
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2025, Volume 69, Issue 4, Pages 45–51
DOI: https://doi.org/10.3103/S1066369X25700318
Document Type: Article
UDC: 517.984
Language: Russian
Citation: I. I. Safarov, M. Kh. Teshayev, Sh. I. Juraev, F. F. Khomidov, “Natural small oscillations of a flat viscoelastic spiral spring”, Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 4, 53–59; Russian Math. (Iz. VUZ), 69:4 (2025), 45–51
Citation in format AMSBIB
\Bibitem{SafTesZhu25}
\by I.~I.~Safarov, M.~Kh.~Teshayev, Sh.~I.~Juraev, F.~F.~Khomidov
\paper Natural small oscillations of a flat viscoelastic spiral spring
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2025
\issue 4
\pages 53--59
\mathnet{http://mi.mathnet.ru/ivm10081}
\crossref{https://doi.org/10.26907/0021-3446-2025-4-53-59}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2025
\vol 69
\issue 4
\pages 45--51
\crossref{https://doi.org/10.3103/S1066369X25700318}
Linking options:
  • https://www.mathnet.ru/eng/ivm10081
  • https://www.mathnet.ru/eng/ivm/y2025/i4/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025