Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2025, Number 4, Pages 80–89
DOI: https://doi.org/10.26907/0021-3446-2025-4-80-89
(Mi ivm10084)
 

On finding the coefficients of the optimal interpolation formula in the space of S.L. Sobolev $\tilde{W}_{2}^{\left( m \right)}\left( {{T}_{1}} \right)$

Kh. U. Khayatov, O. I. Jalolov

Bukhara State University, 11 M. Ikbol str., Bukhara, 200118 Republic of Uzbekistan
References:
Abstract: A typical approximation problem is the interpolation problem. The classical method for solving it is to construct an interpolation polynomial. However, polynomials have a number of disadvantages, such as being a tool for approximating functions with singularities and functions with not very high smoothness. In practice, in order to approximate functions well, instead of constructing a high-degree interpolation polynomial, splines are used, which are very convenient to use.
This paper examines the construction of interpolation splines using the Sobolev method, minimizing the norm in a certain Hilbert space.
For the first time, S.L. Sobolev [12] posed the problem of finding the extremal function for the interpolation formula and calculating the norm of the error functional in the Sobolev space.
In this work, the extremal function of the interpolation formula is found in explicit form in the Sobolev space $W_{2}^{\left( m \right)}\left( {{R}^{n}} \right)$; a function whose generalized derivatives of order $m$ are square integrable. Basically, the problem of constructing optimal interpolation formulas in the space of S.L. Sobolev $\tilde{W}_{2}^{\left( m \right)}\left( {{T}_{1}} \right )$ for $m=4$ is considered.
Keywords: generalized function, space, norm, error functional, interpolation formula, extremal function.
Received: 12.03.2024
Revised: 12.03.2024
Accepted: 20.03.2024
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2025, Volume 69, Issue 4, Pages 62–70
DOI: https://doi.org/10.3103/S1066369X25700343
Document Type: Article
UDC: 517.518.392
Language: Russian
Citation: Kh. U. Khayatov, O. I. Jalolov, “On finding the coefficients of the optimal interpolation formula in the space of S.L. Sobolev $\tilde{W}_{2}^{\left( m \right)}\left( {{T}_{1}} \right)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 4, 80–89; Russian Math. (Iz. VUZ), 69:4 (2025), 62–70
Citation in format AMSBIB
\Bibitem{KhaJal25}
\by Kh.~U.~Khayatov, O.~I.~Jalolov
\paper On finding the coefficients of the optimal interpolation formula in the space of S.L.~Sobolev $\tilde{W}_{2}^{\left( m \right)}\left( {{T}_{1}} \right)$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2025
\issue 4
\pages 80--89
\mathnet{http://mi.mathnet.ru/ivm10084}
\crossref{https://doi.org/10.26907/0021-3446-2025-4-80-89}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2025
\vol 69
\issue 4
\pages 62--70
\crossref{https://doi.org/10.3103/S1066369X25700343}
Linking options:
  • https://www.mathnet.ru/eng/ivm10084
  • https://www.mathnet.ru/eng/ivm/y2025/i4/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025