Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2025, Number 4, Pages 90–103
DOI: https://doi.org/10.26907/0021-3446-2025-4-91-103
(Mi ivm10085)
 

On the best polynomial approximation of analytical functions in the Bergman space $B_2$

M. Sh. Shabozova, Kh. M. Khuromonovb

a Tajik National University, 17 Rudaki Ave., Dushanbe, 734025 Republic of Tajikistan
b International university of tourism and entrepreneurship of Tajikistan, 48/5 Borbad Ave., Dushanbe, 734055 Republic of Tajikistan
References:
Abstract: In this paper a number of extreme problems related to the best polynomial approximation of analytical in a circle $U:=\{z\in\mathbb{C}:|z|<1\}$ functions belonging to the Bergman's space $B_2$ are being solved. The bilateral inequality is proved, which is a generalization of the result of periodic functions $f\in L_{2}$, by M.Sh.Shabozov–G.A.Yusupov obtained for the class $L_{2}^{(r)}[0,2\pi]$-in which $(r-1)$ the derivative of $f^{(r-1)}$ is absolutely continuous, and the derivative of $r $ is order of $f^{(r)}\ in L_{2}$ in the case of a polynomial approximation of $f\in \mathcal{A}(U)$ belonging to $B_{2}^{(r)}(U)$.
A number of cases are given when the bilateral inequality turns into equality. For some classes of functions belonging to $B_2$, the exact values of the known $n$-diameters are found, and the problem of joint approximation of functions and their intermediate derivatives is solved.
Keywords: best polynomial approximation, bilateral inequality, modulus of continuity, extreme approximation characteristic, $n$-diameter, Bergman space.
Received: 17.03.2024
Revised: 17.03.2024
Accepted: 26.06.2024
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2025, Volume 69, Issue 4, Pages 71–82
DOI: https://doi.org/10.3103/S1066369X25700355
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, Kh. M. Khuromonov, “On the best polynomial approximation of analytical functions in the Bergman space $B_2$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 4, 90–103; Russian Math. (Iz. VUZ), 69:4 (2025), 71–82
Citation in format AMSBIB
\Bibitem{ShaKhu25}
\by M.~Sh.~Shabozov, Kh.~M.~Khuromonov
\paper On the best polynomial approximation of analytical functions in the Bergman space $B_2$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2025
\issue 4
\pages 90--103
\mathnet{http://mi.mathnet.ru/ivm10085}
\crossref{https://doi.org/10.26907/0021-3446-2025-4-91-103}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2025
\vol 69
\issue 4
\pages 71--82
\crossref{https://doi.org/10.3103/S1066369X25700355}
Linking options:
  • https://www.mathnet.ru/eng/ivm10085
  • https://www.mathnet.ru/eng/ivm/y2025/i4/p90
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025