|
|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2009, Number 12, Pages 49–58
(Mi ivm6024)
|
|
|
|
This article is cited in 17 scientific papers (total in 17 papers)
Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation
Yu. K. Sabitova Chair of Mathematical Analysis, Sterlitamak State Pedagogical Academy, Sterlitamak, Russia
Abstract:
We consider the equation $y^mu_{xx}-u_{yy}-b^2y^mu=0$ in the rectangular area $\{(x,y)\mid0<x<1,\ 0<y<T\}$, where $m>0$, $b\ge0$, $T>0$ are given real numbers. For this equation we study problems with initial conditions $u(x,0)=\tau(x)$, $u_y(x,0)=\nu(x)$, $0\le x\leq1$, and nonlocal boundary conditions $u(0,y)=u(1,y)$, $u_x(0,y)=0$ or $u_x(0,y)=u_x(1,y)$, $u(1,y)=0$ with $0\le y\le T$. Using the method of spectral analysis, we prove the uniqueness and existence theorems for solutions to these problems.
Keywords:
nonlocal problem, spectral method, completeness, sum of biorthogonal series.
Received: 19.09.2007
Citation:
Yu. K. Sabitova, “Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 12, 49–58; Russian Math. (Iz. VUZ), 53:12 (2009), 41–49
Linking options:
https://www.mathnet.ru/eng/ivm6024 https://www.mathnet.ru/eng/ivm/y2009/i12/p49
|
|