|
|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 3, Pages 28–35
(Mi ivm6709)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
A nonlocal problem for the Bitsadze–Lykov equation
O. A. Repina, S. K. Kumykovab a Chair of Mathematical Statistics and Econometrics, Samara State Economic University, Samara, Russia
b Chair of Function Theory, Kabardino-Balkarian State University, Nalchik, Russia
Abstract:
We study a nonlocal boundary value problem for a degenerate hyperbolic equation. We prove that this problem is uniquely solvable if integral Volterra equations of the second kind are solvable with various values of parameters and a generalized fractional integro-differential operator with a hypergeometric Gaussian function in the kernel.
Keywords:
boundary value problem, fractional integro-differential operator, integral Volterra equation.
Received: 22.11.2007
Citation:
O. A. Repin, S. K. Kumykova, “A nonlocal problem for the Bitsadze–Lykov equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3, 28–35; Russian Math. (Iz. VUZ), 54:3 (2010), 24–30
Linking options:
https://www.mathnet.ru/eng/ivm6709 https://www.mathnet.ru/eng/ivm/y2010/i3/p28
|
|