Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 12, Pages 27–36 (Mi ivm8955)  

Nonholonomic $(n+1)$-webs

M. I. Kabanovaa, A. M. Shelekhovb

a Chair of Geometry, Moscow State Pedagogical University, 1 Malaya Pirogovskaya str., Bld. 1, Moscow, 119991 Russia
b Chair of Functional Analysis and Geometry, Tver State University, 33 Zhelyabov str., Tver, 170000 Russia
References:
Abstract: On an $n$-manifold $M$ we consider nonholonomic $(n+1)$-web $NW$, which consists of $n+1$ distributions of codimension 1. We prove that the web $NW$ is equivalent to $G$-structure with structure group $\lambda E$, the group of scalar matrices. We obtain structure equations of the nonholonomic web $NW$ and find the integrability conditions of all its distributions. We show that a connection $\Gamma$ arises on the manifold $M$ carrying the web $NW$. Distributions of the web $NW$ are totally geodesic with respect to this connection. We consider the special case when the curvature of $\Gamma$ equals zero and in particular when the $(n+1)$-web $NW$ is formed by invariant distributions on the Lie group. We find the equations of the group when all distributions of $NW$ are integrable.
Keywords: nonholonomic $(n+1)$-web, $(n+1)$-web, $G$-structure, $\lambda E$-structure.
Received: 21.05.2013
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 12, Pages 23–31
DOI: https://doi.org/10.3103/S1066369X14120032
Bibliographic databases:
Document Type: Article
UDC: 514.763
Language: Russian
Citation: M. I. Kabanova, A. M. Shelekhov, “Nonholonomic $(n+1)$-webs”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 12, 27–36; Russian Math. (Iz. VUZ), 58:12 (2014), 23–31
Citation in format AMSBIB
\Bibitem{KabShe14}
\by M.~I.~Kabanova, A.~M.~Shelekhov
\paper Nonholonomic $(n+1)$-webs
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 12
\pages 27--36
\mathnet{http://mi.mathnet.ru/ivm8955}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 12
\pages 23--31
\crossref{https://doi.org/10.3103/S1066369X14120032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924048749}
Linking options:
  • https://www.mathnet.ru/eng/ivm8955
  • https://www.mathnet.ru/eng/ivm/y2014/i12/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :66
    References:71
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025