|
|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 7, Pages 30–40
(Mi ivm9256)
|
|
|
|
Existence of eigenvalues of operators acting in $L^2(R^n)$
V. S. Mokeychev Kazan Federal University,
18 Kremlyovskaya str., Kazan, 420008 Russia
Abstract:
We write out conditions that help to prove the existence of eigenvalues and characteristic values for operator $F(D)-C(\lambda): L^{2}(R^{m})\to L^{2}(R^{m})$, where $F(D)$ is a pseudodifferential operator with a symbol $F(i\xi)$ and $C(\lambda): L^{2}(R^{m}) \to L^{2}(R^{m})$ is a linear continuous operator.
Keywords:
pseudodifferential operator, characteristic values, eigenvalues.
Received: 09.02.2016
Citation:
V. S. Mokeychev, “Existence of eigenvalues of operators acting in $L^2(R^n)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7, 30–40; Russian Math. (Iz. VUZ), 61:7 (2017), 25–34
Linking options:
https://www.mathnet.ru/eng/ivm9256 https://www.mathnet.ru/eng/ivm/y2017/i7/p30
|
| Statistics & downloads: |
| Abstract page: | 296 | | Full-text PDF : | 72 | | References: | 74 | | First page: | 6 |
|