Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, Number 12, Pages 16–23 (Mi ivm9305)  

MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge

D. A. Zhukov

Southern Federal University, 8a Mil’chakov str., Rostov-on-Don, 344090 Russia
References:
Abstract: We investigate the infinitesimal MG-deformations of a simply connected surface with positive Gaussian curvature. We choose any symmetric tensor on the surface, variation of the first and the second invariant of this tensor equals given function along a boundary. The study of this boundary-value problems is reduced to the investigation of a solvability of Riemann–Gilbert boundary-value problem and to calculation of its index. As a result we get theorems of existence and uniqness for the infinitesimal MG-deformation.
Keywords: infinitesimal MG-deformations, simply-connected surface, Riemann–Gilbert boundary-value problem, index.
Received: 29.07.2016
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, Volume 61, Issue 12, Pages 13–18
DOI: https://doi.org/10.3103/S1066369X17120027
Bibliographic databases:
Document Type: Article
UDC: 514.754
Language: Russian
Citation: D. A. Zhukov, “MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 12, 16–23; Russian Math. (Iz. VUZ), 61:12 (2017), 13–18
Citation in format AMSBIB
\Bibitem{Zhu17}
\by D.~A.~Zhukov
\paper MG-deformations of a surface of positive Gaussian curvature under assignment of variation of any tensor along an edge
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2017
\issue 12
\pages 16--23
\mathnet{http://mi.mathnet.ru/ivm9305}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2017
\vol 61
\issue 12
\pages 13--18
\crossref{https://doi.org/10.3103/S1066369X17120027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416288100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037047673}
Linking options:
  • https://www.mathnet.ru/eng/ivm9305
  • https://www.mathnet.ru/eng/ivm/y2017/i12/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025