|
|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 1, Pages 3–9
(Mi ivm9313)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems
R. Boukoucha University of Bejaia, 06000 Bejaia, Algeria
Abstract:
For two-dimensional Kolmogorov system, where $R\left( x,y\right)$, $S\left( x,y\right)$, $P\left( x,y\right)$, $Q\left( x,y\right)$, $M\left( x,y\right)$, and $N\left( x,y\right) $ are homogeneous polynomials of degrees $m$, $a$, $n$, $n$, $b$, and $b$, respectively, we obtain an explicit expression of the first integral and prove the non-existence of periodic orbits and of limit cycles. We adduce an example of applicability of our result.
Keywords:
Kolmogorov system, first integral, periodic orbits, limit cycle.
Received: 08.08.2016
Citation:
R. Boukoucha, “On the non-existence of periodic orbits for a class of two-dimensional Kolmogorov systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 3–9; Russian Math. (Iz. VUZ), 62:1 (2018), 1–6
Linking options:
https://www.mathnet.ru/eng/ivm9313 https://www.mathnet.ru/eng/ivm/y2018/i1/p3
|
|