Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2018, Number 10, Pages 34–42 (Mi ivm9403)  

This article is cited in 3 scientific papers (total in 3 papers)

On analytic periodic solutions to nonlinear differential equations with a delay (advancing)

A. A. Kosov, E. I. Semenov

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, 134 Lermontov str., Irkutsk, 664033 Russia
References:
Abstract: We consider the system of a type of reaction–diffusion in which the diffusion coefficients depend in an arbitrary way on the spatial variables and concentrations, and the reactions are described by homogeneous functions with coefficients that depend in a special way on the spatial variables. It is shown that the system has family of exact solutions expressed through solutions to a system of ordinary differential equations (ODE) with the homogeneous functions in right-hand sides. For a special case of the ODE system we construct the general solution representable by Jacobi higher transcendental functions. It is established that solutions are periodic functions and satisfy non-linear differential equations with delay (advancing) which size is defined by the choice of initial conditions for ODE system. It is shown that these periodic solutions are analytic functions, representable in the neighborhood of each point on the period by the convergent power series.
Keywords: reaction–diffusion system, reduction to ODE system, exact solution, first integral, Jacobi elliptic function, differential equation with delay (advancing), periodic solution.
Received: 22.08.2017
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, Volume 62, Issue 10, Pages 30–36
DOI: https://doi.org/10.3103/S1066369X18100043
Bibliographic databases:
Document Type: Article
UDC: 517.926
Language: Russian
Citation: A. A. Kosov, E. I. Semenov, “On analytic periodic solutions to nonlinear differential equations with a delay (advancing)”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 10, 34–42; Russian Math. (Iz. VUZ), 62:10 (2018), 30–36
Citation in format AMSBIB
\Bibitem{KosSem18}
\by A.~A.~Kosov, E.~I.~Semenov
\paper On analytic periodic solutions to nonlinear differential equations with a delay (advancing)
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2018
\issue 10
\pages 34--42
\mathnet{http://mi.mathnet.ru/ivm9403}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2018
\vol 62
\issue 10
\pages 30--36
\crossref{https://doi.org/10.3103/S1066369X18100043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000446041600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054135777}
Linking options:
  • https://www.mathnet.ru/eng/ivm9403
  • https://www.mathnet.ru/eng/ivm/y2018/i10/p34
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:305
    Full-text PDF :94
    References:63
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025