Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2019, Number 3, Pages 19–31
DOI: https://doi.org/10.26907/0021-3446-2019-3-19-31
(Mi ivm9444)
 

This article is cited in 2 scientific papers (total in 2 papers)

Basis of trancendense in differential field of invariants of pseugo-Galilean group

K. K. Muminov, V. I. Chilin

National University of Uzbekistan, Vuzgorodok, Tashkent, 100174 Republic of Uzbekistan
Full-text PDF (224 kB) Citations (2)
References:
Abstract: Let $G$ be a subgroup of the group of invertible linear operators, acting in a finite-dimensional real linear space $X$. One of the problems of differential geometry is the study of necessary and sufficient conditions for $G$-equivalence of paths in $X$. In solving this problem we use methods of the theory of differential invariants describing transcendence basis of differential fields of $ G $-invariant differential rational functions. Using explicit descriptions of these bases allows to establish criteria for $G$-equivalence of paths in $X$. Such an approach has been used in solving the problem of equivalence of paths with respect to the actions of special linear, orthogonal, pseudo-orthogonal, and symplectic groups.
We give an explicit description of one of the finite bases of transcendence in the differential field of invariant differential rational functions with respect to the action of the pseudo-Galilean group $\Gamma O$. Using this basis, necessary and sufficient conditions are established for the $\Gamma O$-equivalence of paths in $X$.
Keywords: pseudo-Galilean space, group of movements, differential rational function, transcendence basis, differential invariant, regular path.
Received: 06.02.2018
Revised: 09.09.2018
Accepted: 26.09.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, Volume 63, Issue 3, Pages 15–24
DOI: https://doi.org/10.3103/S1066369X19030022
Bibliographic databases:
Document Type: Article
UDC: 512.745: 512.628: 514.125
Language: Russian
Citation: K. K. Muminov, V. I. Chilin, “Basis of trancendense in differential field of invariants of pseugo-Galilean group”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 3, 19–31; Russian Math. (Iz. VUZ), 63:3 (2019), 15–24
Citation in format AMSBIB
\Bibitem{MumChi19}
\by K.~K.~Muminov, V.~I.~Chilin
\paper Basis of trancendense in differential field of invariants of pseugo-Galilean group
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2019
\issue 3
\pages 19--31
\mathnet{http://mi.mathnet.ru/ivm9444}
\crossref{https://doi.org/10.26907/0021-3446-2019-3-19-31}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2019
\vol 63
\issue 3
\pages 15--24
\crossref{https://doi.org/10.3103/S1066369X19030022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000472936300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85067914864}
Linking options:
  • https://www.mathnet.ru/eng/ivm9444
  • https://www.mathnet.ru/eng/ivm/y2019/i3/p19
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025