Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2020, Number 3, Pages 48–63
DOI: https://doi.org/10.26907/0021-3446-2020-3-48-63
(Mi ivm9550)
 

This article is cited in 14 scientific papers (total in 14 papers)

On the root-class residuality of certain free products of groups with normal amalgamated subgroups

E. V. Sokolov, E. A. Tumanova

Ivanovo State University, 39 Ermak str., Ivanovo, 153025 Russia
References:
Abstract: Let $\mathcal{K}$ be a root class of groups closed under taking quotient groups, $G$ be a free product of groups $A$ and $B$ with amalgamated subgroups $H$ and $K$. Let also $H$ be normal in $A$, $K$ be normal in $B$, and $\operatorname{Aut}_{G}(H)$ denote the set of automorphisms of $H$ induced by all inner automorphisms of $G$. We prove a criterion for $G$ to be residually a $\mathcal{K}$-group provided $\operatorname{Aut}_{G}(H)$ is an abelian group or it satisfies some other conditions. We apply this result in the cases when $A$ and $B$ are bounded nilpotent groups or $A/H, B/K \in \mathcal{K}$.
Keywords: generalized free product, residual finiteness, residual $p$-finiteness, residual solvability, root-class residuality.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00187
Received: 11.03.2019
Revised: 25.04.2019
Accepted: 19.06.2019
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, Volume 64, Issue 3, Pages 43–56
DOI: https://doi.org/10.3103/S1066369X20030044
Bibliographic databases:
Document Type: Article
UDC: 512.543
Language: Russian
Citation: E. V. Sokolov, E. A. Tumanova, “On the root-class residuality of certain free products of groups with normal amalgamated subgroups”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 3, 48–63; Russian Math. (Iz. VUZ), 64:3 (2020), 43–56
Citation in format AMSBIB
\Bibitem{SokTum20}
\by E.~V.~Sokolov, E.~A.~Tumanova
\paper On the root-class residuality of certain free products of groups with normal amalgamated subgroups
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2020
\issue 3
\pages 48--63
\mathnet{http://mi.mathnet.ru/ivm9550}
\crossref{https://doi.org/10.26907/0021-3446-2020-3-48-63}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2020
\vol 64
\issue 3
\pages 43--56
\crossref{https://doi.org/10.3103/S1066369X20030044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000528211100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083780235}
Linking options:
  • https://www.mathnet.ru/eng/ivm9550
  • https://www.mathnet.ru/eng/ivm/y2020/i3/p48
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025