Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2021, Number 10, Pages 78–91
DOI: https://doi.org/10.26907/0021-3446-2021-10-78-91
(Mi ivm9723)
 

Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$

M. Sh. Shabozova, M. A. Abdulkhaminovb

a Tajik National University, 17 Rudaki Ave., Dushanbe, 734025 Tajikistan
b Technological University of Tajikistan, 63/3 N. Karabaeva Ave., Dushanbe, 734061 Tajikistan
References:
Abstract: Exact constants are found in inequalities type Jackson-Stechkin for smoothness characte-ristics $\Lambda_{m}(f), m \in\mathbb{N} $ determined by averaging the norm in $L_{2}$ of finite differences of the $m$-th order of the functions $f$. For function classes, defined by the smoothness characteristic $\Lambda_{m}(f)$, and the majorant $\Phi $ satisfying a certain condition, calculated the exact values of different $n$-widths.
Keywords: best approximations, finite differences of the $m$-th order, smoothness characteristic, $n$-widths.
Received: 06.12.2020
Revised: 06.12.2020
Accepted: 30.03.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, Volume 65, Issue 10, Pages 69–81
DOI: https://doi.org/10.3103/S1066369X21100078
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, M. A. Abdulkhaminov, “Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 10, 78–91; Russian Math. (Iz. VUZ), 65:10 (2021), 69–81
Citation in format AMSBIB
\Bibitem{ShaAbd21}
\by M.~Sh.~Shabozov, M.~A.~Abdulkhaminov
\paper Some inequalities between the best polynomial approximation and averaged finite-difference norms in space $L_2$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2021
\issue 10
\pages 78--91
\mathnet{http://mi.mathnet.ru/ivm9723}
\crossref{https://doi.org/10.26907/0021-3446-2021-10-78-91}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2021
\vol 65
\issue 10
\pages 69--81
\crossref{https://doi.org/10.3103/S1066369X21100078}
Linking options:
  • https://www.mathnet.ru/eng/ivm9723
  • https://www.mathnet.ru/eng/ivm/y2021/i10/p78
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025