Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 4, Pages 15–26
DOI: https://doi.org/10.26907/0021-3446-2022-4-15-26
(Mi ivm9765)
 

The method of total approximation of the solution of the Dirichlet problem for a multidimensional Sobolev-type equation

M. Kh. Beshtokov

Institite of Applied Mathematics and Automation Kabardin-Balkar Scientific center of Russian Academy of Sciences, 89 A Shortanova str., Nalchik, 360004 Russia
References:
Abstract: We study the Dirichlet problem for a multidimensional differential equation of Sobolev type with variable coefficients. The considered equation is reduced to an integro-differential equation of parabolic type with a small parameter. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme is constructed. Using the method of energy inequalities, an a priori estimate is obtained for the solution of a locally one-dimensional difference scheme, which implies its stability and convergence. For a two-dimensional problem, an algorithm for the numerical solution of the problem posed was constructed, numerical experiments were carried out on test examples, illustrating the theoretical results obtained in this work.
Keywords: boundary value problems, a priori estimate, multidimensional Sobolev-type equation, Dirichlet problem, locally one-dimensional scheme, stability, convergence.
Received: 01.07.2021
Revised: 03.08.2021
Accepted: 29.09.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 4, Pages 12–23
DOI: https://doi.org/10.3103/S1066369X22040028
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. Kh. Beshtokov, “The method of total approximation of the solution of the Dirichlet problem for a multidimensional Sobolev-type equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 4, 15–26; Russian Math. (Iz. VUZ), 66:4 (2022), 12–23
Citation in format AMSBIB
\Bibitem{Bes22}
\by M.~Kh.~Beshtokov
\paper The method of total approximation of the solution of the Dirichlet problem for a multidimensional Sobolev-type equation
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 4
\pages 15--26
\mathnet{http://mi.mathnet.ru/ivm9765}
\crossref{https://doi.org/10.26907/0021-3446-2022-4-15-26}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 4
\pages 12--23
\crossref{https://doi.org/10.3103/S1066369X22040028}
Linking options:
  • https://www.mathnet.ru/eng/ivm9765
  • https://www.mathnet.ru/eng/ivm/y2022/i4/p15
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025