Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 6, Pages 37–53
DOI: https://doi.org/10.26907/0021-3446-2022-6-37-53
(Mi ivm9782)
 

This article is cited in 5 scientific papers (total in 5 papers)

Integral formulas of the type of Carleman and B. Ya. Levin for meromorphic and subharmonic functions

E. B. Menshikova

Bashkir State University, 32 Z. Validi str., Ufa, 450076 Russia
Full-text PDF (507 kB) Citations (5)
References:
Abstract: When studying the relationships between the distributions of the zeros of holomorphic and entire functions with the addition of distributions of poles for meromorphic functions and the growth of these functions, it is important to relate these distributions with integral or other characteristics of growth. In a more general subharmonic framework, these are the relationships between the Riesz measure of a subharmonic function or the Riesz charge for the difference of such functions and the growth characteristics of such functions. The basis of such relationships, as a rule, is a variety of integral formulas. Often a complicating factor in the use of such formulas is the presence in them of derivatives from the functions under study. The article proposes an option to get rid of such difficulties by using inversion on the plane.
Keywords: meromorphic function, distribution of zeros and poles, $\delta$-subharmonic function, Riesz measure and charge, Carleman integral formula.
Funding agency Grant number
Russian Foundation for Basic Research 19-31-90007
Received: 04.08.2021
Revised: 04.08.2021
Accepted: 29.09.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 6, Pages 28–42
DOI: https://doi.org/10.3103/S1066369X22060056
Document Type: Article
UDC: 517.53 : 517.574
Language: Russian
Citation: E. B. Menshikova, “Integral formulas of the type of Carleman and B. Ya. Levin for meromorphic and subharmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6, 37–53; Russian Math. (Iz. VUZ), 66:6 (2022), 28–42
Citation in format AMSBIB
\Bibitem{Men22}
\by E.~B.~Menshikova
\paper Integral formulas of the type of Carleman and B. Ya.~Levin for meromorphic and subharmonic functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 6
\pages 37--53
\mathnet{http://mi.mathnet.ru/ivm9782}
\crossref{https://doi.org/10.26907/0021-3446-2022-6-37-53}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 6
\pages 28--42
\crossref{https://doi.org/10.3103/S1066369X22060056}
Linking options:
  • https://www.mathnet.ru/eng/ivm9782
  • https://www.mathnet.ru/eng/ivm/y2022/i6/p37
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025