Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 6, Pages 60–66
DOI: https://doi.org/10.26907/0021-3446-2022-6-60-66
(Mi ivm9784)
 

On the nonlocal problem for a hyperbolic equation with a parabolic degeneration

A. V. Tarasenko, J. O. Yakovleva

Samara State Technical University, 244 Molodogvardeyskaya str., Samara, 443100 Russia
References:
Abstract: The nonlocal problem for the second-order partial differential equation is investigated in the characteristic region. The given equation is the equation of two independent variables $x$, $y$. The given equation is an equation of hyperbolic type in the half-plane $y>0$ with parabolic degeneracy at $y=0$. The line of parabolic degeneracy $y = 0$ represents the geometric locus of the cusp points of the characteristic curves. The novelty of the statement of the problem lies in the fact that the boundary condition contains a linear combination of the operators $D_{0x}^{\alpha}$ and $D_{x1}^{\alpha}$. These operators for $ \alpha>0 $ are fractional differentiation operators of order $ \alpha $, and for $ \alpha <0 $ they coincide with the Riemann-Liouville fractional integration operator of order $ \alpha $. The unique solvability of the posed problem is proved for various values of the orders of the operators included in the boundary condition. The properties of the operators of fractional integro-differentiation and the properties of the Gauss hypergeometric function are used in the proof. The solution of the problem is given in explicit form.
Keywords: boundary value problem, operator of fractional integration, operator of fractional differentiation, Euler-Darboux equation, hypergeometric function.
Received: 19.08.2021
Revised: 17.10.2021
Accepted: 23.12.2021
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 6, Pages 48–53
DOI: https://doi.org/10.3103/S1066369X2206007X
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. V. Tarasenko, J. O. Yakovleva, “On the nonlocal problem for a hyperbolic equation with a parabolic degeneration”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6, 60–66; Russian Math. (Iz. VUZ), 66:6 (2022), 48–53
Citation in format AMSBIB
\Bibitem{TarYak22}
\by A.~V.~Tarasenko, J.~O.~Yakovleva
\paper On the nonlocal problem for a hyperbolic equation with a parabolic degeneration
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 6
\pages 60--66
\mathnet{http://mi.mathnet.ru/ivm9784}
\crossref{https://doi.org/10.26907/0021-3446-2022-6-60-66}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 6
\pages 48--53
\crossref{https://doi.org/10.3103/S1066369X2206007X}
Linking options:
  • https://www.mathnet.ru/eng/ivm9784
  • https://www.mathnet.ru/eng/ivm/y2022/i6/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025