Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 6, Pages 79–86
DOI: https://doi.org/10.26907/0021-3446-2022-6-79-86
(Mi ivm9786)
 

This article is cited in 3 scientific papers (total in 3 papers)

Brief communications

Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the Sobolev space

R. Z. Dautov

N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (378 kB) Citations (3)
References:
Abstract: In the one-dimensional case, interpolation weighted Besov spaces are defined, for functions from which direct and inverse estimates of the approximation error by algebraic polynomials and splines in Sobolev norms are valid. In a number of cases exact constants are indicated in the estimates. These results, as well as the inverse inequalities proved in the article, can be used to justify $p$- and $h$-$p$-finite element methods for solving boundary value problems for one-dimensional differential equations of order $2m$.
Keywords: Weighted Sobolev space, Besov interpolation space, direct and inverse approximation theorem, Bernstein inequality, inverse inequality.
Received: 15.03.2022
Revised: 15.03.2022
Accepted: 08.04.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 6, Pages 65–72
DOI: https://doi.org/10.3103/S1066369X22060032
Document Type: Article
UDC: 519.651
Language: Russian
Citation: R. Z. Dautov, “Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the Sobolev space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6, 79–86; Russian Math. (Iz. VUZ), 66:6 (2022), 65–72
Citation in format AMSBIB
\Bibitem{Dau22}
\by R.~Z.~Dautov
\paper Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the Sobolev space
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 6
\pages 79--86
\mathnet{http://mi.mathnet.ru/ivm9786}
\crossref{https://doi.org/10.26907/0021-3446-2022-6-79-86}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 6
\pages 65--72
\crossref{https://doi.org/10.3103/S1066369X22060032}
Linking options:
  • https://www.mathnet.ru/eng/ivm9786
  • https://www.mathnet.ru/eng/ivm/y2022/i6/p79
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025