Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2022, Number 11, Pages 110–123
DOI: https://doi.org/10.26907/0021-3446-2022-11-110-123
(Mi ivm9831)
 

On the best polynomial approximation in Hardy space

M. Sh. Shabozova, Z. Sh. Malakbozovb

a Tajik National University, 17 Rudaki Ave., Dushanbe, 734025 Republic of Tajikistan
b Institute of Tourism, Entrepreneurship and Service, 48/5 Borbad str., Dushanbe, 734055 Republic of Tajikistan
References:
Abstract: Sharp Jackson-Stechkin-type inequalities in which the best polynomial approximation of a function in the Hardy space $H_2$ is estimated from above both in terms of the generalized modulus of continuity of the $m$-th order and in terms of the $\mathcal{K}$-functional of $r$-th derivatives are found. For some classes of functions defined with the formulated characteristics in the space $H_2$, the exact values of $n$-widths are calculated. Also in the classes $W_{2}^{(r)}(\widetilde{\omega}_{m},\Phi)$ and $W_{2}^{(r)}(\mathcal{K}_{m},\Phi)$, where $r\in\mathbb{N}$, $r\ge2$ the exact values of the best polynomial approximations of intermediate derivatives $f^{(s)}$, $1\le s\le r-1$ are obtained.
Keywords: the best polynomial approximation, generalized modulus of continuity, $\mathcal{K}$-functional, characteristic of smoothness, $n$-width.
Received: 15.01.2022
Revised: 15.01.2022
Accepted: 29.06.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, Volume 66, Issue 11, Pages 97–109
DOI: https://doi.org/10.3103/S1066369X2211007X
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. Sh. Shabozov, Z. Sh. Malakbozov, “On the best polynomial approximation in Hardy space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 11, 110–123; Russian Math. (Iz. VUZ), 66:11 (2022), 97–109
Citation in format AMSBIB
\Bibitem{ShaMal22}
\by M.~Sh.~Shabozov, Z.~Sh.~Malakbozov
\paper On the best polynomial approximation in Hardy space
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2022
\issue 11
\pages 110--123
\mathnet{http://mi.mathnet.ru/ivm9831}
\crossref{https://doi.org/10.26907/0021-3446-2022-11-110-123}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2022
\vol 66
\issue 11
\pages 97--109
\crossref{https://doi.org/10.3103/S1066369X2211007X}
Linking options:
  • https://www.mathnet.ru/eng/ivm9831
  • https://www.mathnet.ru/eng/ivm/y2022/i11/p110
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025