Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 3, Pages 52–62
DOI: https://doi.org/10.26907/0021-3446-2023-3-52-62
(Mi ivm9861)
 

This article is cited in 2 scientific papers (total in 2 papers)

Oscillation inequalities on real and ergodic $H^1$ spaces

S. Demir

Agri Ibrahim Cecen University, 04100 Ağrı, Turkey
References:
Abstract: Let $(x_n)$ be a sequence and $\rho\geq 1$. For a fixed sequences $n_1<n_2<n_3<\dots$, and $M$ define the oscillation operator
$$\mathcal{O}_\rho (x_n)=\left(\sum_{k=1}^\infty\sup_{\substack{n_k\leq m< n_{k+1}\\ m\in M}}\left|x_m-x_{n_k}\right|^\rho\right)^{1/\rho}.$$
Let $(X,\mathscr{B} ,\mu , \tau)$ be a dynamical system with $(X,\mathscr{B} ,\mu )$ a probability space and $\tau$ a measurable, invertible, measure preserving point transformation from $X$ to itself.
Suppose that the sequences $(n_k)$ and $M$ are lacunary. Then we prove the following results for $\rho\geq 2$.
  • Define $\phi_n(x)=\dfrac{1}{n}\chi_{[0,n]}(x)$ on $\mathbb{R}$. Then there exists a constant $C>0$ such that
    $$\|\mathcal{O}_\rho (\phi_n\ast f)\|_{L^1(\mathbb{R})}\leq C\|f\|_{H^1(\mathbb{R})}$$
    for all $f\in H^1(\mathbb{R})$.
  • Let
    $$A_nf(x)=\frac{1}{n}\sum_{k=1}^nf(\tau^kx)$$
    be the usual ergodic averages in ergodic theory. Then
    $$\|\mathcal{O}_\rho (A_nf)\|_{L^1(X)}\leq C\|f\|_{H^1(X)}$$
    for all $f\in H^1(X)$.
  • If $[f(x)\log (x)]^+$ is integrable, then $\mathcal{O}_\rho (A_nf)$ is integrable.
Keywords: oscillation operator, Hardy space, $H^1$ space, ergodic Hardy space, ergodic $H^1$ space, ergodic average.
Received: 22.06.2022
Revised: 19.08.2022
Accepted: 28.09.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 3, Pages 42–52
DOI: https://doi.org/10.3103/S1066369X23030039
Document Type: Article
UDC: 517
Language: Russian
Citation: S. Demir, “Oscillation inequalities on real and ergodic $H^1$ spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 3, 52–62; Russian Math. (Iz. VUZ), 67:3 (2023), 42–52
Citation in format AMSBIB
\Bibitem{Dem23}
\by S.~Demir
\paper Oscillation inequalities on real and ergodic $H^1$ spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 3
\pages 52--62
\mathnet{http://mi.mathnet.ru/ivm9861}
\crossref{https://doi.org/10.26907/0021-3446-2023-3-52-62}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 3
\pages 42--52
\crossref{https://doi.org/10.3103/S1066369X23030039}
Linking options:
  • https://www.mathnet.ru/eng/ivm9861
  • https://www.mathnet.ru/eng/ivm/y2023/i3/p52
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:147
    Full-text PDF :37
    References:45
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025