Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 5, Pages 11–19
DOI: https://doi.org/10.26907/0021-3446-2023-5-11-19
(Mi ivm9874)
 

On fractional powers of the Schrödinger operator with a potential singular on manifolds

T. N. Alikulov, A. R. Khalmukhamedov

National University of Uzbekistan named after M.Ulugbek, VUZgorodok, Tashkent, 100174 Uzbekistan
References:
Abstract: Sufficient conditions on the degree of summability $p$ are found under which the Sсhrödinger operator with a potential singular on manifolds is a positive operator in Banach spaces $L_p$, and it is also shown that the domains of different degrees of this operator form an interpolation pair. In addition, we establish sufficient conditions on $p$ that ensure that fractional powers $\sigma$, $0< \sigma < 1$ of the operator are bounded from $W_p^{2\sigma}$ to $L_p$.
Keywords: Fractional power, the Schrödinger operator, positive operator, Banach space.
Received: 12.08.2022
Revised: 03.11.2022
Accepted: 21.12.2022
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 5, Pages 8–15
DOI: https://doi.org/10.3103/S1066369X2305002X
Document Type: Article
UDC: 517.95
Language: Russian
Citation: T. N. Alikulov, A. R. Khalmukhamedov, “On fractional powers of the Schrödinger operator with a potential singular on manifolds”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 5, 11–19; Russian Math. (Iz. VUZ), 67:5 (2023), 8–15
Citation in format AMSBIB
\Bibitem{AliKha23}
\by T.~N.~Alikulov, A.~R.~Khalmukhamedov
\paper On fractional powers of the Schr\"odinger operator with a potential singular on manifolds
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 5
\pages 11--19
\mathnet{http://mi.mathnet.ru/ivm9874}
\crossref{https://doi.org/10.26907/0021-3446-2023-5-11-19}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 5
\pages 8--15
\crossref{https://doi.org/10.3103/S1066369X2305002X}
Linking options:
  • https://www.mathnet.ru/eng/ivm9874
  • https://www.mathnet.ru/eng/ivm/y2023/i5/p11
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025