Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 8, Pages 56–63
DOI: https://doi.org/10.26907/0021-3446-2023-8-56-63
(Mi ivm9908)
 

Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle

A. E. Pasenchuk

South Russian State Polytechnic University, 132 Education str., Novocherkassk, 346428 Russia
References:
Abstract: In a countably normed space of smooth functions on the unit circle, we consider the Riemann boundary value problem operator with smooth coefficients. The concept of smooth degenerate factorizations of types of plus and minus functions that are smooth on the unit circle is introduced. Criteria for the existence of such factorizations are given. An apparatus is given for calculating the indices of these factorizations in terms of coefficients. In terms of smooth degenerate factorizations, a criterion for the invertibility of the Riemann boundary value problem operator is obtained. This allows us to describe the spectrum of this operator. Relationships between the spectra of the Riemann operator in the spaces of smooth and summable functions with the same coefficients are indicated.
Keywords: $A$-singular operator Riemann, problem linear conjugation, factorization, index, spectrum.
Received: 21.11.2022
Revised: 21.11.2022
Accepted: 29.03.2023
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 8, Pages 36–43
DOI: https://doi.org/10.3103/S1066369X2308008X
Document Type: Article
UDC: 517.968
Language: Russian
Citation: A. E. Pasenchuk, “Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 8, 56–63; Russian Math. (Iz. VUZ), 67:8 (2023), 36–43
Citation in format AMSBIB
\Bibitem{Pas23}
\by A.~E.~Pasenchuk
\paper Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 8
\pages 56--63
\mathnet{http://mi.mathnet.ru/ivm9908}
\crossref{https://doi.org/10.26907/0021-3446-2023-8-56-63}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 8
\pages 36--43
\crossref{https://doi.org/10.3103/S1066369X2308008X}
Linking options:
  • https://www.mathnet.ru/eng/ivm9908
  • https://www.mathnet.ru/eng/ivm/y2023/i8/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025