|
This article is cited in 2 scientific papers (total in 2 papers)
On the problem of optimal interpolation of functions
Kh. M. Shadimetovab, N. H. Mamatovacb a Tashkent State Transport University, 1 Odilkhodjaev str., Tashkent, 100167 Republic of Uzbekistan
b V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9 University str., Tashkent, 100174 Republic of Uzbekistan
c Bukhara State University, 11 Muhammad Ikbol str., Bukhara 200118 Republic of Uzbekistan
Abstract:
In this work, the problem of constructing optimal interpolation formulas is discussed. Here, first, an exact upper bound for the error of the interpolation formula in the Sobolev space is calculated. The existence and uniqueness of the optimal interpolation formula, which gives the smallest error, are proved. An algorithm for finding the coefficients of the optimal interpolation formula is given. By implementing this algorithm, the optimal coefficients are found.
Keywords:
Sobolev space, extremal function, composite lattice optimal cubature formulas, error functional.
Received: 29.03.2023 Revised: 29.03.2023 Accepted: 29.05.2023
Citation:
Kh. M. Shadimetov, N. H. Mamatova, “On the problem of optimal interpolation of functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12, 59–70; Russian Math. (Iz. VUZ), 67:12 (2023), 53–63
Linking options:
https://www.mathnet.ru/eng/ivm9926 https://www.mathnet.ru/eng/ivm/y2023/i12/p59
|
|