Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 9, Pages 58–75
DOI: https://doi.org/10.26907/0021-3446-2023-9-58-75
(Mi ivm9934)
 

This article is cited in 3 scientific papers (total in 3 papers)

Exact solution for capillary waves on the surface of a liquid of finite depth

M. M. Alimov

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
References:
Abstract: Using the Schwartz function method, we have obtained a new exact solution for the problem of stationary capillary waves of finite amplitude on the surface of a liquid that has a finite depth. The reliability of the solution was confirmed by the results of numerical verification of the main boundary equation. The obtained solution of the problem is general in the sense that for any Weber number one can find the corresponding wave configuration. Parametric analysis showed a nonmonotonic dependence of the wave-length and its amplitude on the Weber number. The fact that the problem has one more branch of the solution (the trivial solution) indicates the possibility of the existence of other branches. The Schwartz function method cannot guarantee finding all solutions of the problem even from the specified class of functions. Therefore, the question of reproducing the known exact solution of W. Kimmersley for this problem and its reliability remains open. Note that for the parameter $\beta$ included in the main boundary equation, W. Kimmersley preliminarily laid down assumption $\beta=1$. The found exact solution has the property that $\beta > 1$ and cannot coincide with W. Kimmersley's solution.
Keywords: capillary wave, potential flow, complex variable, elliptic function.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2020-931
Received: 02.12.2022
Revised: 02.12.2022
Accepted: 29.03.2023
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 9, Pages 52–67
DOI: https://doi.org/10.3103/S1066369X23090050
Document Type: Article
UDC: 532.594
Language: Russian
Citation: M. M. Alimov, “Exact solution for capillary waves on the surface of a liquid of finite depth”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 9, 58–75; Russian Math. (Iz. VUZ), 67:9 (2023), 52–67
Citation in format AMSBIB
\Bibitem{Ali23}
\by M.~M.~Alimov
\paper Exact solution for capillary waves on the surface of a liquid of finite depth
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 9
\pages 58--75
\mathnet{http://mi.mathnet.ru/ivm9934}
\crossref{https://doi.org/10.26907/0021-3446-2023-9-58-75}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 9
\pages 52--67
\crossref{https://doi.org/10.3103/S1066369X23090050}
Linking options:
  • https://www.mathnet.ru/eng/ivm9934
  • https://www.mathnet.ru/eng/ivm/y2023/i9/p58
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025