Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2024, Number 6, Pages 27–36
DOI: https://doi.org/10.26907/0021-3446-2024-6-27-36
(Mi ivm9987)
 

On the best approximation of analytic in a disk functions in the weighted Bergman space $\mathscr{B}_{2,\mu}$

M. R. Langarshoev

Civil Defence Academy of EMERCOM of Russia, 1 A Sokolovskaya str., micr. Novogorsc, Khimki, Moscow region, 141435 Russia
References:
Abstract: We obtain sharp inequalities between the best approximations of analytic in the unit disk functions by algebraic complex polynomials and the moduli of continuity of higher-order derivatives in the Bergman weighted space $\mathscr{B}_{2,\mu}$. Based on these inequalities, the exact values of some known $n$-widths of classes of analytic in the unit disk functions are calculated.
Keywords: best polynomial approximation, $m$th order modulus of continuity, Bergman weighted space, width.
Received: 13.04.2023
Revised: 21.06.2023
Accepted: 26.09.2023
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, Volume 68, Issue 6, Pages 21–29
DOI: https://doi.org/10.3103/S1066369X24700415
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. R. Langarshoev, “On the best approximation of analytic in a disk functions in the weighted Bergman space $\mathscr{B}_{2,\mu}$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 6, 27–36; Russian Math. (Iz. VUZ), 68:6 (2024), 21–29
Citation in format AMSBIB
\Bibitem{Lan24}
\by M.~R.~Langarshoev
\paper On the best approximation of analytic in a disk functions in the weighted Bergman space $\mathscr{B}_{2,\mu}$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2024
\issue 6
\pages 27--36
\mathnet{http://mi.mathnet.ru/ivm9987}
\crossref{https://doi.org/10.26907/0021-3446-2024-6-27-36}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2024
\vol 68
\issue 6
\pages 21--29
\crossref{https://doi.org/10.3103/S1066369X24700415}
Linking options:
  • https://www.mathnet.ru/eng/ivm9987
  • https://www.mathnet.ru/eng/ivm/y2024/i6/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :17
    References:48
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025