Izvestiya VUZ. Applied Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izvestiya VUZ. Applied Nonlinear Dynamics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya VUZ. Applied Nonlinear Dynamics, 2020, Volume 28, Issue 1, Pages 77–89
DOI: https://doi.org/10.18500/0869-6632-2020-28-1-77-89
(Mi ivp357)
 

This article is cited in 2 scientific papers (total in 2 papers)

NONLINEAR DYNAMICS AND NEUROSCIENCE

Dynamics of a network of map-based model neurons for supervised learning of a reservoir computing system

M. M. Pugavkoab, O. V. Maslennikovab, V. I. Nekorkinab

a Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod
b National Research Lobachevsky State University of Nizhny Novgorod
Abstract: The purpose of this work is to develop a reservoir computing system that contains a network of model neurons with discrete time, and to study the characteristics of the system when it is trained to autonomously generate a harmonic target signal. Methods of work include approaches of nonlinear dynamics (phase space analysis depending on parameters), machine learning (reservoir computing, supervised error minimization) and computer modeling (implementation of numerical algorithms, plotting of characteristics and diagrams). Results. A reservoir computing system based on a network of coupled discrete model neurons was constructed, and the possibility of its supervised training in generating the target signal using the controlled error minimization method FORCE was demonstrated. It has been found that with increasing network size, the mean square error of learning decreases. The dynamic regimes arising at the level of individual activity of intra-reservoir neurons at various stages of training are studied. It is shown that in the process of training, the network-reservoir transits from the state of space-time disorder to the state with regular clusters of spiking activity. The optimal values of the coupling coefficients and the parameters of the intrinsic dynamics of neurons corresponding to the minimum learning error were found. Conclusion. A new reservoir computing system is proposed in the work, the basic unit of which is the Courbage-Nekorkin discrete-time model neuron. The advantage of a network based on such a spiking neuron model is that the model is specified in the form of a mapping, therefore, there is no need to perform an integration operation. The proposed system has shown its effectiveness in training autonomous generation of a harmonic function, as well as for a number of other target functions.
Keywords: reservoir computing, machine learning, discrete-time model neuron, target signal, error function.
Received: 23.09.2019
Bibliographic databases:
Document Type: Article
UDC: 530.182
Language: Russian
Citation: M. M. Pugavko, O. V. Maslennikov, V. I. Nekorkin, “Dynamics of a network of map-based model neurons for supervised learning of a reservoir computing system”, Izvestiya VUZ. Applied Nonlinear Dynamics, 28:1 (2020), 77–89
Citation in format AMSBIB
\Bibitem{PugMasNek20}
\by M.~M.~Pugavko, O.~V.~Maslennikov, V.~I.~Nekorkin
\paper Dynamics of a network of map-based model neurons for supervised learning of a reservoir computing system
\jour Izvestiya VUZ. Applied Nonlinear Dynamics
\yr 2020
\vol 28
\issue 1
\pages 77--89
\mathnet{http://mi.mathnet.ru/ivp357}
\crossref{https://doi.org/10.18500/0869-6632-2020-28-1-77-89}
Linking options:
  • https://www.mathnet.ru/eng/ivp357
  • https://www.mathnet.ru/eng/ivp/v28/i1/p77
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya VUZ. Applied Nonlinear Dynamics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025