Izvestiya VUZ. Applied Nonlinear Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izvestiya VUZ. Applied Nonlinear Dynamics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya VUZ. Applied Nonlinear Dynamics, 2023, Volume 31, Issue 4, Pages 484–500
DOI: https://doi.org/10.18500/0869-6632-003052
(Mi ivp545)
 

This article is cited in 1 scientific paper (total in 1 paper)

NONLINEAR DYNAMICS AND NEUROSCIENCE

Noise influence on recurrent neural network with nonlinear neurons

V. M. Moskvitin, N. I. Semenova

Saratov State University, Russia
References:
Abstract: The purpose of this study is to establish the features of noise propagation and accumulation in a recurrent neural network using a simplified echo network as an example. In this work, we studied the influence of activation function of artificial neurons and the connection matrices between them. Methods. We have considered white Gaussian noise sources. We used additive, multiplicative and mixed noise depending on how the noise is introduced into artificial neurons. The noise impact was estimated using the dispersion (variance) of the output signal. Results. It is shown that the activation function plays a significant role in noise accumulation. Two nonlinear activation functions have been considered: the hyperbolic tangent and the sigmoid function with range form 0 to 1. It is shown that some types of noise are suppressed in the case of the second function. As a result of considering the influence of coupling matrices, it was found that diagonal coupling matrices with a large blurring coefficient lead to less noise accumulation in the echo network reservoir with an increase in the reservoir memory influence. Conclusion. It is shown that activation functions of the form of sigmoid with range from 0 to 1 are suitable for suppressing multiplicative and mixed noise. The accumulation of noise in the reservoir was considered for three types of coupling matrices inside the reservoir: a uniform matrix, a band matrix with a small blurring coefficient, and a band matrix with a large blurring coefficient. It has been found that the band matrix echo networks with a high blurring coefficient accumulates the least noise. This holds for both additive and multiplicative noise.
Keywords: neural networks, recurrent neural networks, echo-state networks, noise influence, white noise, nonlinear activation function.
Funding agency Grant number
Russian Science Foundation 21-72-00002
This work was supported by Russian Science Foundation (Project no. 21-72-00002)
Received: 06.03.2023
Bibliographic databases:
Document Type: Article
UDC: 004.032.26, 530.152.2
Language: Russian
Citation: V. M. Moskvitin, N. I. Semenova, “Noise influence on recurrent neural network with nonlinear neurons”, Izvestiya VUZ. Applied Nonlinear Dynamics, 31:4 (2023), 484–500
Citation in format AMSBIB
\Bibitem{MosSem23}
\by V.~M.~Moskvitin, N.~I.~Semenova
\paper Noise influence on recurrent neural network with nonlinear neurons
\jour Izvestiya VUZ. Applied Nonlinear Dynamics
\yr 2023
\vol 31
\issue 4
\pages 484--500
\mathnet{http://mi.mathnet.ru/ivp545}
\crossref{https://doi.org/10.18500/0869-6632-003052}
\edn{https://elibrary.ru/XGRKMR}
Linking options:
  • https://www.mathnet.ru/eng/ivp545
  • https://www.mathnet.ru/eng/ivp/v31/i4/p484
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya VUZ. Applied Nonlinear Dynamics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025