Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Pis'ma v Zh. Èksper. Teoret. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki, 2025, Volume 121, Issue 7, Pages 600–604
DOI: https://doi.org/10.31857/S0370274X25040096
(Mi jetpl7484)
 

CONDENSED MATTER

Quantum entanglement in quasi-equilibrium states in the multipulse spin locking of the nuclear magnetic resonance

G. A. Bochkin, S. G. Vasil'ev, E. I. Kuznetsova, É. B. Fel'dman

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
References:
DOI: https://doi.org/10.31857/S0370274X25040096
Abstract: Quantum entanglement is studied NMR multipulse spin locking, when a system of spins coupled by the dipole-dipole interaction in a strong magnetic field is irradiated by a sequence of resonant high-frequency $\varphi $-pulses with the same time delay $2\tau $ between successive pulses. For times $t\sim T_2$ ($T_2\approx \omega_{\text{loc}}^{-1}$, $\omega_{\text{loc}}$ is determined by the dipole-dipole interaction), quasi-equilibrium with a structure depending on the relation between the pulsed field $\omega_1 = \varphi/{2\tau}$ and $\omega_{\text{loc}}$ is established in the system. For $\omega_1 \lessapprox \omega_{\text{loc}}$, a one-temperature quasi-equilibrium state arises, while a quasi-equilibrium with the dipole and Zeeman temperatures appears for $\omega_1 \gg \omega_{\text{loc}}$. The temperature dependence of entanglement is investigated for $\omega_1 \lessapprox \omega_{\text{loc}}$. For $\omega_1 \gg \omega_{\text{loc}}$, the further evolution of the system is determined by the Provotorov equations and leads to the equalization of the dipole and Zeeman temperatures. It is shown that the entanglement is absent in this case.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 124013000760-0
This work was supported by ongoing institutional funding of the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science (state assignment no. 124013000760-0).
Received: 18.02.2025
Revised: 26.02.2025
Accepted: 26.02.2025
English version:
Journal of Experimental and Theoretical Physics Letters, 2025, Volume 121, Issue 7, Pages 572–576
DOI: https://doi.org/10.1134/S002136402560572X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. A. Bochkin, S. G. Vasil'ev, E. I. Kuznetsova, É. B. Fel'dman, “Quantum entanglement in quasi-equilibrium states in the multipulse spin locking of the nuclear magnetic resonance”, Pis'ma v Zh. Èksper. Teoret. Fiz., 121:7 (2025), 600–604; JETP Letters, 121:7 (2025), 572–576
Citation in format AMSBIB
\Bibitem{BocVasKuz25}
\by G.~A.~Bochkin, S.~G.~Vasil'ev, E.~I.~Kuznetsova, \'E.~B.~Fel'dman
\paper Quantum entanglement in quasi-equilibrium states in the multipulse spin locking of the nuclear magnetic resonance
\jour Pis'ma v Zh. \`Eksper. Teoret. Fiz.
\yr 2025
\vol 121
\issue 7
\pages 600--604
\mathnet{http://mi.mathnet.ru/jetpl7484}
\edn{https://elibrary.ru/ARBZBW}
\transl
\jour JETP Letters
\yr 2025
\vol 121
\issue 7
\pages 572--576
\crossref{https://doi.org/10.1134/S002136402560572X}
Linking options:
  • https://www.mathnet.ru/eng/jetpl7484
  • https://www.mathnet.ru/eng/jetpl/v121/i7/p600
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Письма в Журнал экспериментальной и теоретической физики Pis'ma v Zhurnal Иksperimental'noi i Teoreticheskoi Fiziki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025