Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2004, Volume 11, Number 2, Pages 177–188 (Mi jmag199)  

This article is cited in 3 scientific papers (total in 3 papers)

On the Bernstein functional equation

M. V. Mironyuk

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
Full-text PDF (260 kB) Citations (3)
Abstract: We give two proofs of the Bernstein theorem about characterization of the Gaussian distribution by the independence of the sum and the difference of independent random variables. These proofs use neither the Cramer theorem about decomposition of a Gaussian distribution nor the finite difference method. Due to this fact our proofs without changes are carried over to the case of a locally compact Abelian group with single-valued division by two, provided that the characteristic functions of the considering distributions do not vanish. We use the last result for the description of all locally compact Abelian groups for which the Bernstein theorem is valid.
Received: 24.11.2003
Bibliographic databases:
Document Type: Article
MSC: 39B99, 60B15, 62E10
Language: Russian
Citation: M. V. Mironyuk, “On the Bernstein functional equation”, Mat. Fiz. Anal. Geom., 11:2 (2004), 177–188
Citation in format AMSBIB
\Bibitem{Mir04}
\by M.~V.~Mironyuk
\paper On the Bernstein functional equation
\jour Mat. Fiz. Anal. Geom.
\yr 2004
\vol 11
\issue 2
\pages 177--188
\mathnet{http://mi.mathnet.ru/jmag199}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2083980}
\zmath{https://zbmath.org/?q=an:1066.62017}
Linking options:
  • https://www.mathnet.ru/eng/jmag199
  • https://www.mathnet.ru/eng/jmag/v11/i2/p177
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025