Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 2003, Volume 10, Number 2, Pages 262–268 (Mi jmag249)  

Short Notes

On a relation between the coefficients and the sum of the generalized Taylor series

T. V. Rvachova

Department of Higher Mathematics, N.\,Ye.~Zhukovsky National Aeronautical University "KhAI", 17 Chkalova Str., Kharkiv, 61070, Ukraine
Abstract: Let $f\in C^\infty [-1,1]$ and $\exists\,\rho\in [1,2)$ such that $\forall\,k=0,1,2,\dots$ $\|f^{(k)}\|_{C[-1,1]}\leq c(f)\rho^k2^{\frac{k(k+1)}2}$. Then it expands in the generalized Taylor series, which was introduced by V. A. Rvachov in 1982. In this paper it is shown that if the restrictions $\|f^{(n)}\|=o(2^{\frac{n(n+1)}2})$, $n\to\infty$ are imposed on the sum of this series, and stronger restrictions $|f^{(n)}(x_{n,k})|\leq CA(n)$, $\frac{A(n+1)}{A(n)}\leq 2^{n+\frac 12} $ hold for its coefficients, then these stronger restrictions will hold for the sum of the series too. As a consequence the conditions of belonging to Gevrey class and of real analyticity for the above-mentioned functions are obtained.
Received: 08.08.2001
Bibliographic databases:
Document Type: Article
MSC: 41A58
Language: English
Citation: T. V. Rvachova, “On a relation between the coefficients and the sum of the generalized Taylor series”, Mat. Fiz. Anal. Geom., 10:2 (2003), 262–268
Citation in format AMSBIB
\Bibitem{Rva03}
\by T.~V.~Rvachova
\paper On a relation between the coefficients and the sum of the generalized Taylor series
\jour Mat. Fiz. Anal. Geom.
\yr 2003
\vol 10
\issue 2
\pages 262--268
\mathnet{http://mi.mathnet.ru/jmag249}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=2012283}
\zmath{https://zbmath.org/?q=an:1065.41054}
Linking options:
  • https://www.mathnet.ru/eng/jmag249
  • https://www.mathnet.ru/eng/jmag/v10/i2/p262
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025