Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1999, Volume 6, Number 1/2, Pages 81–99 (Mi jmag403)  

Generatrix of catenoid of space 3-form

L. A. Masaltsev

Department of Mathematics and Mechanics, Kharkov State University, 4 Svobody Sqr., 310077, Kharkov, Ukrain
Abstract: Constant mean curvature surfaces of revolution in euclidean 3-space are known as surfaces of Ch. Delaunay. They possess one remarkable property: their profile curves (generatrices) are the trajectories of focuses of conic sections by its rolling along the straight line. Analogous construction is realized in the space forms $H^3$ and $S^3$ in the case of minimal surfaces of revolution and the following theorem is proved.
Theorem. Generatrix of catenoid of revolution of space form $H^3(S^3)$ is the trajectory of focus of hyperbolic (spherical) parabola by its rolling along the geodesic ray.
Received: 20.01.1998
Bibliographic databases:
Document Type: Article
Language: English
Citation: L. A. Masaltsev, “Generatrix of catenoid of space 3-form”, Mat. Fiz. Anal. Geom., 6:1/2 (1999), 81–99
Citation in format AMSBIB
\Bibitem{Mas99}
\by L.~A.~Masaltsev
\paper Generatrix of catenoid of space 3-form
\jour Mat. Fiz. Anal. Geom.
\yr 1999
\vol 6
\issue 1/2
\pages 81--99
\mathnet{http://mi.mathnet.ru/jmag403}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1699441}
\zmath{https://zbmath.org/?q=an:1052.53503}
Linking options:
  • https://www.mathnet.ru/eng/jmag403
  • https://www.mathnet.ru/eng/jmag/v6/i1/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025