Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1999, Volume 6, Number 1/2, Pages 158–181 (Mi jmag407)  

This article is cited in 6 scientific papers (total in 6 papers)

Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients

I. D. Chueshova, L. S. Pankratovb

a Department of Mechanics and Mathematics, Kharkov State University, 4 Svobody Sqr., 310077, Kharkov
b Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin Ave., 310164, Kharkov, Ukraine
Full-text PDF (376 kB) Citations (6)
Abstract: The initial boundary value problem for semilinear parabolic equation
$$ \frac{\partial u^\varepsilon}{\partial t}-\sum_{i,j=1}^n\frac{\partial}{\partial x_i}\left(a^\varepsilon_{ij}(x)\frac{\partial u^\varepsilon}{\partial x_j}\right)+f(u^\varepsilon)=h^\varepsilon (x), \qquad x\in\Omega, \quad t\in(0,T), $$
with the coefficients $a^\varepsilon_{ij}(x)$ depending on a small parameter $\varepsilon$ is considered. We suppose that $a^\varepsilon_{ij}(x)$ have an order $\varepsilon^{3+\gamma}$ $(0 \le\gamma<1)$ on a set of spherical annuli $G^\alpha_\varepsilon$ having the thickness $d_\varepsilon=d\varepsilon^{2+\gamma}$. The annuli are periodically (with a period $\varepsilon$) distributed in $\Omega$. On the remaining part of the domain these coefficients are constants. The asymptotical behavior of the global attractor ${\mathcal A}_\varepsilon$ of the problem as $\varepsilon \rightarrow 0$ is studied. It is shown that the global attractors ${\mathcal A}_\varepsilon$ tend in a appropriate sense to a weak global attractor ${\mathcal A}$ of the homogenized model as $\varepsilon\to 0$. This model is a system of a parabolic p.d.e. coupled with an o.d.e.
Received: 12.06.1997
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. D. Chueshov, L. S. Pankratov, “Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients”, Mat. Fiz. Anal. Geom., 6:1/2 (1999), 158–181
Citation in format AMSBIB
\Bibitem{ChuPan99}
\by I.~D.~Chueshov, L.~S.~Pankratov
\paper Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients
\jour Mat. Fiz. Anal. Geom.
\yr 1999
\vol 6
\issue 1/2
\pages 158--181
\mathnet{http://mi.mathnet.ru/jmag407}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1699445}
\zmath{https://zbmath.org/?q=an:1052.35509}
Linking options:
  • https://www.mathnet.ru/eng/jmag407
  • https://www.mathnet.ru/eng/jmag/v6/i1/p158
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :87
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025