Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1998, Volume 5, Number 3/4, Pages 139–148 (Mi jmag433)  

Closed surfaces in $E^4$ with nonvanishing Whitney's invariant

Yu. A. Aminov, N. V. Manzhos

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov
Abstract: We prove the existence of two-dimensional closed regular orientable surfaces of an arbitrary topological type in $E^4$ that do not have a regular vector field. An example of such surfaces is constructed. Their geometrical properties are investigated.
Received: 09.04.1997
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. A. Aminov, N. V. Manzhos, “Closed surfaces in $E^4$ with nonvanishing Whitney's invariant”, Mat. Fiz. Anal. Geom., 5:3/4 (1998), 139–148
Citation in format AMSBIB
\Bibitem{AmiMan98}
\by Yu.~A.~Aminov, N.~V.~Manzhos
\paper Closed surfaces in $E^4$ with nonvanishing Whitney's invariant
\jour Mat. Fiz. Anal. Geom.
\yr 1998
\vol 5
\issue 3/4
\pages 139--148
\mathnet{http://mi.mathnet.ru/jmag433}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=1668993}
\zmath{https://zbmath.org/?q=an:0959.53004}
Linking options:
  • https://www.mathnet.ru/eng/jmag433
  • https://www.mathnet.ru/eng/jmag/v5/i3/p139
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025