Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1997, Volume 4, Number 1/2, Pages 133–144 (Mi jmag452)  

Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$

L. A. Masal'tsev

Kharkiv State University
Abstract: Bianchi–Lie–Backlund transformation in space forms $H^3(-1)$ (Poincare model of Lobachevsky space at the upper half-plane) and $S^3(1)$ (spherical space with the Riemann metric) are considered. The conditions defining the transformation in global coordinates and the corresponding differential equations of surfaces of constant external curvature are derived.
Received: 28.08.1995
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. A. Masal'tsev, “Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$”, Mat. Fiz. Anal. Geom., 4:1/2 (1997), 133–144
Citation in format AMSBIB
\Bibitem{Mas97}
\by L.~A.~Masal'tsev
\paper Bianchi--Li--Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$
\jour Mat. Fiz. Anal. Geom.
\yr 1997
\vol 4
\issue 1/2
\pages 133--144
\mathnet{http://mi.mathnet.ru/jmag452}
\zmath{https://zbmath.org/?q=an:0909.53008}
Linking options:
  • https://www.mathnet.ru/eng/jmag452
  • https://www.mathnet.ru/eng/jmag/v4/i1/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025