|
|
Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1997, Volume 4, Number 1/2, Pages 133–144
(Mi jmag452)
|
|
|
|
Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$
L. A. Masal'tsev Kharkiv State University
Abstract:
Bianchi–Lie–Backlund transformation in space forms $H^3(-1)$ (Poincare model of Lobachevsky space at the upper half-plane) and $S^3(1)$ (spherical space with the Riemann metric) are considered. The conditions defining the transformation in global coordinates and the corresponding differential equations of surfaces of constant external curvature are derived.
Received: 28.08.1995
Citation:
L. A. Masal'tsev, “Bianchi–Li–Backlund transformation in spaces of constant curvature $H^3(-1)$ and $S^3(1)$”, Mat. Fiz. Anal. Geom., 4:1/2 (1997), 133–144
Linking options:
https://www.mathnet.ru/eng/jmag452 https://www.mathnet.ru/eng/jmag/v4/i1/p133
|
|