Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2013, Volume 9, Number 1, Pages 59–72 (Mi jmag549)  

This article is cited in 3 scientific papers (total in 3 papers)

Rate of Decay of the Bernstein Numbers

A. Plichko

Department of Mathematics, Cracow University of Technology, Cracow, Poland
Full-text PDF (204 kB) Citations (3)
References:
Abstract: We show that if a Banach space $X$ contains uniformly complemented $\ell_2^n$'s then there exists a universal constant $b=b(X)>0$ such that for each Banach space $Y$, and any sequence $d_n\downarrow 0$ there is a bounded linear operator $T:X\to Y$ with the Bernstein numbers $b_n(T)$ of $T$ satisfying $b^{-1}d_n\le b_n(T)\le bd_n$ for all $n$.
Key words and phrases: $B$-convex space, Bernstein numbers, Bernstein pair, uniformly complemented $\ell_2^n\,$, superstrictly singular operator.
Received: 02.08.2012
Bibliographic databases:
Document Type: Article
MSC: 47B06, 47B10
Language: English
Citation: A. Plichko, “Rate of Decay of the Bernstein Numbers”, Zh. Mat. Fiz. Anal. Geom., 9:1 (2013), 59–72
Citation in format AMSBIB
\Bibitem{Pli13}
\by A.~Plichko
\paper Rate of Decay of the Bernstein Numbers
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2013
\vol 9
\issue 1
\pages 59--72
\mathnet{http://mi.mathnet.ru/jmag549}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3088156}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314340900005}
Linking options:
  • https://www.mathnet.ru/eng/jmag549
  • https://www.mathnet.ru/eng/jmag/v9/i1/p59
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025