Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2013, Volume 9, Number 1, Pages 102–107 (Mi jmag551)  

An Application of Kadets–Pełczyński Sets to Narrow Operators

I. V. Krasikovaa, M. M. Popovb

a Department of Mathematics, Zaporizhzhya National University 66 Zhukows’koho Str., Zaporizhzhya, Ukraine
b Department of Applied Mathematics, Chernivtsi National University, 2 Kotsyubyns’koho Str., Chernivtsi 58012, Ukraine
References:
Abstract: A known analogue of the Pitt compactness theorem for function spaces asserts that if $1 \leq p < 2$ and $p < r < \infty$, then every operator $T:L_p \to L_r$ is narrow. Using a technique developed by M. I. Kadets and A. Pełczyński, we prove a similar result. More precisely, if $1 \leq p \leq 2$ and $F$ is a Köthe–Banach space on $[0,1]$ with an absolutely continuous norm containing no isomorph of $L_p$ such that $F \subset L_p$, then every regular operator $T: L_p \to F$ is narrow.
Key words and phrases: narrow operator, Köthe function space, Banach space $L_p$.
Received: 27.09.2012
Bibliographic databases:
Document Type: Article
MSC: Primary 46A35; Secondary 46B15, 46A40, 46B42
Language: English
Citation: I. V. Krasikova, M. M. Popov, “An Application of Kadets–Pełczyński Sets to Narrow Operators”, Zh. Mat. Fiz. Anal. Geom., 9:1 (2013), 102–107
Citation in format AMSBIB
\Bibitem{KraPop13}
\by I.~V.~Krasikova, M.~M.~Popov
\paper An Application of Kadets--Pe\l czy\'nski Sets to Narrow Operators
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2013
\vol 9
\issue 1
\pages 102--107
\mathnet{http://mi.mathnet.ru/jmag551}
\mathscinet{https://mathscinet.ams.org/mathscinet-getitem?mr=3097549}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000314340900007}
Linking options:
  • https://www.mathnet.ru/eng/jmag551
  • https://www.mathnet.ru/eng/jmag/v9/i1/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025