Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Fizika, Analiz, Geometriya [Mathematical Physics, Analysis, Geometry], 1995, Volume 2, Number 3, Pages 347–355 (Mi jmag638)  

A simple proof of Dubinin's theorem

A. E. Fryntov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47, Lenin Ave., 310164, Kharkov, Ukraine
Abstract: Let $\Omega$ be a domain formed by removing $n$ radial segments connecting the circles $\{z:| z |=r_0\}$ and $\{z:|z|=1\}$ from the unit disk $\mathbf D$. Let $\Omega_0$ be a domain of the same type which is invariant with respect to rotation by the angle $2\pi/n$. If $\omega(z)$ and $\omega_0(z)$ are the harmonic measures of the unit circle with respect to these domains, then the inequality
$$\omega_0\geq\omega_0(0),$$
holds, and the equality is possible only if the domain $\Omega$ coincides with $\Omega_0$ up to rotation. This proposition is known as the Gonchar problem which has been proved by Dubinin. The aim of this paper is to give a more simple proof of this theorem.
Received: 10.05.1994
Document Type: Article
UDC: 517
Language: English
Citation: A. E. Fryntov, “A simple proof of Dubinin's theorem”, Mat. Fiz. Anal. Geom., 2:3 (1995), 347–355
Citation in format AMSBIB
\Bibitem{Fry95}
\by A.~E.~Fryntov
\paper A simple proof of Dubinin's theorem
\jour Mat. Fiz. Anal. Geom.
\yr 1995
\vol 2
\issue 3
\pages 347--355
\mathnet{http://mi.mathnet.ru/jmag638}
Linking options:
  • https://www.mathnet.ru/eng/jmag638
  • https://www.mathnet.ru/eng/jmag/v2/i3/p347
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025