Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Mat. Fiz. Anal. Geom.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 2020, Volume 16, Number 3, Pages 364–371
DOI: https://doi.org/10.15407/mag16.032.364
(Mi jmag761)
 

On projective classification of points of a submanifold in the Euclidean space

Alexander Yampolsky

V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv, 61022, Ukraine
References:
DOI: https://doi.org/10.15407/mag16.032.364
Abstract: We propose the classification of points of a submanifold in the Euclidean space in terms of the indicatrix of normal curvature up to projective transformation and give a necessary condition for finiteness of number of such classes. We apply the condition to the case of three-dimensional submanifold in six-dimensional Euclidean space and prove that there are 10 types of projectively equivalent points.
Key words and phrases: normal curvature indicatrix, submanifold point type, projective transformation.
Received: 01.06.2020
Bibliographic databases:
Document Type: Article
MSC: 53A07, 53B20, 53B25
Language: English
Citation: Alexander Yampolsky, “On projective classification of points of a submanifold in the Euclidean space”, Zh. Mat. Fiz. Anal. Geom., 16:3 (2020), 364–371
Citation in format AMSBIB
\Bibitem{Yam20}
\by Alexander~Yampolsky
\paper On projective classification of points of a submanifold in the Euclidean space
\jour Zh. Mat. Fiz. Anal. Geom.
\yr 2020
\vol 16
\issue 3
\pages 364--371
\mathnet{http://mi.mathnet.ru/jmag761}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000590794800008}
\elib{https://elibrary.ru/item.asp?id=44187796}
Linking options:
  • https://www.mathnet.ru/eng/jmag761
  • https://www.mathnet.ru/eng/jmag/v16/i3/p364
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025