Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2024, Volume 17, Issue 4, Pages 455–463 (Mi jsfu1175)  

On the boundedness of maximal operators associated with singular surfaces

Salim E. Usmanov

Samarkand State University named after Sh. Rashidov, Samarkand, Uzbekistan
References:
Abstract: The paper is devoted to investigate maximal operators associated with singular surfaces. It is proved the boundedness of these operators in the space $L^{p},$ when singular surfaces are given by parametric equations in $\mathbb{R}^{3}.$
Keywords: maximal operator, averaging operator, fractional power series, nonsingular point, critical exponent.
Received: 10.03.2023
Received in revised form: 15.06.2023
Accepted: 14.03.2024
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: Salim E. Usmanov, “On the boundedness of maximal operators associated with singular surfaces”, J. Sib. Fed. Univ. Math. Phys., 17:4 (2024), 455–463
Citation in format AMSBIB
\Bibitem{Usm24}
\by Salim~E.~Usmanov
\paper On the boundedness of maximal operators associated with singular surfaces
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2024
\vol 17
\issue 4
\pages 455--463
\mathnet{http://mi.mathnet.ru/jsfu1175}
\edn{https://elibrary.ru/AVGDOC}
Linking options:
  • https://www.mathnet.ru/eng/jsfu1175
  • https://www.mathnet.ru/eng/jsfu/v17/i4/p455
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:78
    Full-text PDF :51
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025