Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2024, Volume 17, Issue 4, Pages 470–477 (Mi jsfu1177)  

On property $M(4)$ of the graph $K^n_2+O_m$

Le Xuan Hung

Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
References:
Abstract: Given a list $L(v)$ for each vertex $v$, we say that the graph $G$ is $L$-colorable if there is a proper vertex coloring of G where each vertex $v$ takes its color from $L(v)$. The graph is uniquely $k$-list colorable if there is a list assignment $L$ such that $|L(v)| = k$ for every vertex $v$ and the graph has exactly one $L$-coloring with these lists. If a graph $G$ is not uniquely $k$-list colorable, we also say that $G$ has property $M(k)$. The least integer $k$ such that $G$ has the property $M(k)$ is called the $m$-number of $G$, denoted by $m(G)$. In this paper, we characterize uniquely list colorability of the graph $G=K^n_2+O_r$. We shall prove that $m(K^2_2+O_r)=4$ if and only if $r\geqslant 9$, $m(K^3_2+O_r)=4$ for every $1\leqslant r\leqslant 5$ and $m(K^4_2+O_1)=4$.
Keywords: vertex coloring (coloring), list coloring, uniquely list colorable graph, complete r-partite graph.
Received: 02.10.2023
Received in revised form: 12.12.2023
Accepted: 14.03.2024
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: English
Citation: Le Xuan Hung, “On property $M(4)$ of the graph $K^n_2+O_m$”, J. Sib. Fed. Univ. Math. Phys., 17:4 (2024), 470–477
Citation in format AMSBIB
\Bibitem{Hun24}
\by Le~Xuan~Hung
\paper On property $M(4)$ of the graph $K^n_2+O_m$
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2024
\vol 17
\issue 4
\pages 470--477
\mathnet{http://mi.mathnet.ru/jsfu1177}
\edn{https://elibrary.ru/EUUNUZ}
Linking options:
  • https://www.mathnet.ru/eng/jsfu1177
  • https://www.mathnet.ru/eng/jsfu/v17/i4/p470
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :38
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025