|
|
Journal of Siberian Federal University. Mathematics & Physics, 2024, Volume 17, Issue 5, Pages 609–612
(Mi jsfu1192)
|
|
|
|
On a new identity for double sum related to Bernoulli numbers
Brahim Mittouab a EDPNL & HM Laboratory of ENS Kouba, Algeria
b Department of Mathematics, University Kasdi Merbah Ouargla, Algeria
Abstract:
Let $m$, $n$ and $l$ be integers with $0\leqslant l\leqslant m+n$. It is the main purpose of this paper to give an identity for the sum: $$\mathop{\sum_{a=0}^{m} \sum_{b=0}^{n}}_{a+b\geqslant m+n-l}B_{m-a}B_{n-b}\frac{\binom{m}{a}\binom{n}{b}}{a+b+1}\binom{a+b+1}{m+n-l},$$ where $B_m$ $(m=0,1,2,\dots)$ is the Bernoulli number. As corollary we prove that the above sum equal to $\dfrac{1}{2}$ when $l=0$.
Keywords:
Bernoulli polynomial, Bernoulli number, generating function.
Received: 10.04.2024 Received in revised form: 24.05.2024 Accepted: 14.07.2024
Citation:
Brahim Mittou, “On a new identity for double sum related to Bernoulli numbers”, J. Sib. Fed. Univ. Math. Phys., 17:5 (2024), 609–612
Linking options:
https://www.mathnet.ru/eng/jsfu1192 https://www.mathnet.ru/eng/jsfu/v17/i5/p609
|
|