Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2024, Volume 17, Issue 5, Pages 613–621 (Mi jsfu1193)  

The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$

Sevdiyar A. Imomkulov, Sukrotbek I. Kurbonboev

National University of Uzbekistan, Tashkent, Uzbekistan
References:
Abstract: The purpose of this paper is to introduce and study strongly $m$-subharmonic ($sh_m$) functions on complex manifolds $X\subset \mathbb{C}^N, dim X=n, n\leqslant N.$ There are different ways to define $sh_m$-functions on complex manifolds: using local coordinates, using retraction $\pi : {{\mathbb{C}}^{N}}\to X$ or using Jensen measures (see for example [1, 8, 13]). In this paper we use the local coordinates. In Section 1 we present the definition and simplest properties of $sh_m$-functions in ${{\mathbb{C}}^{n}}.$ In Section 2, we provide the definition of $sh_m$-functions in the domains $D\subset X$ of the complex manifold $X$ and prove several of their potential properties. Section 3 introduces maximal functions and their properties, while Section 4 presents the main result of the work (Theorem 4.1) concerning the solvability of the Dirichlet problem in regular domains.
Keywords: $sh_m$-functions, plurisubharmonic functions, Stein manifolds, Dirichlet problem.
Received: 10.03.2024
Received in revised form: 27.04.2024
Accepted: 14.06.2024
Bibliographic databases:
Document Type: Article
UDC: 517.55
Language: English
Citation: Sevdiyar A. Imomkulov, Sukrotbek I. Kurbonboev, “The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$”, J. Sib. Fed. Univ. Math. Phys., 17:5 (2024), 613–621
Citation in format AMSBIB
\Bibitem{ImoKur24}
\by Sevdiyar~A.~Imomkulov, Sukrotbek~I.~Kurbonboev
\paper The Dirichlet problem in the class of $\mathrm{sh_m}$-functions on a Stein manifold $X$
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2024
\vol 17
\issue 5
\pages 613--621
\mathnet{http://mi.mathnet.ru/jsfu1193}
\edn{https://elibrary.ru/NDRKSA}
Linking options:
  • https://www.mathnet.ru/eng/jsfu1193
  • https://www.mathnet.ru/eng/jsfu/v17/i5/p613
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025