Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2025, Volume 18, Issue 2, Pages 229–242 (Mi jsfu1238)  

A classical aspect of the Dirac equation in the context of conformable fractional derivative

Ilyas Haouam

Laboratoire de Physique Mathématique et de Physique Subatomique (LPMPS), Université Fréres Mentouri, Constantine 25000, Algeria
References:
Abstract: In this article, in the context of the conformable fractional derivative (CFD) and employing Ehrenfest's theorem, we investigate the classical limit of the Dirac equation within conformable fractional quantum mechanics. This leads to obtaining deformed classical equations. Here, we assess the effectiveness of Ehrenfest's theorem in deriving the classical limit considering CFD. Also, we examine the correspondence principle under the influence of CFD. Additionally, we obtain the conformable fractional continuity equation.
Keywords: conformable fractional Dirac equation, conformable fractional continuity equation, Ehrenfest's theorem, classical limit, correspondence principle, conformable quantum mechanics.
Received: 24.04.2024
Received in revised form: 29.05.2024
Accepted: 14.01.2025
Bibliographic databases:
Document Type: Article
UDC: 530.1
Language: English
Citation: Ilyas Haouam, “A classical aspect of the Dirac equation in the context of conformable fractional derivative”, J. Sib. Fed. Univ. Math. Phys., 18:2 (2025), 229–242
Citation in format AMSBIB
\Bibitem{Hao25}
\by Ilyas~Haouam
\paper A classical aspect of the Dirac equation in the context of conformable fractional derivative
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2025
\vol 18
\issue 2
\pages 229--242
\mathnet{http://mi.mathnet.ru/jsfu1238}
\edn{https://elibrary.ru/PPVCEQ}
Linking options:
  • https://www.mathnet.ru/eng/jsfu1238
  • https://www.mathnet.ru/eng/jsfu/v18/i2/p229
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :80
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025